基于多通道图聚合注意力机制的共享单车借还量预测
王福建,张泽天,陈喜群,王殿海

Usage prediction of shared bike based on multi-channel graph aggregation attention mechanism
Fujian WANG,Zetian ZHANG,Xiqun CHEN,Dianhai WANG
表 1 深圳和纽约共享单车数据集在不同预测模型下的误差
Tab.1 Errors of Shenzhen and New York bike-sharing datasets under different prediction models
模型深圳纽约
MAERMSEWMAPEMAERMSEWMAPE
ARIMA10.59517.7280.2011.8623.5050.416
Time-GCN5.24110.1020.1001.6022.9740.358
LSTM5.51210.3470.1051.5172.8060.339
CNN-bi-LSTM4.8639.2490.0921.2162.2140.271
GCN-LSTM-FCN3.1005.8410.0591.1752.2090.262
GCN-Transformer2.0113.3050.0381.0231.9860.228
GraphAgg-iTransformer1.6852.6910.0320.9731.8260.217
ST-AGCN1.7152.8920.0330.9751.8100.218
MCGA1.519*2.578*0.029*0.969*1.799*0.216*