基于多通道图聚合注意力机制的共享单车借还量预测
|
王福建,张泽天,陈喜群,王殿海
|
Usage prediction of shared bike based on multi-channel graph aggregation attention mechanism
|
Fujian WANG,Zetian ZHANG,Xiqun CHEN,Dianhai WANG
|
|
表 1 深圳和纽约共享单车数据集在不同预测模型下的误差 |
Tab.1 Errors of Shenzhen and New York bike-sharing datasets under different prediction models |
|
模型 | 深圳 | | 纽约 | MAE | RMSE | WMAPE | | MAE | RMSE | WMAPE | ARIMA | 10.595 | 17.728 | 0.201 | | 1.862 | 3.505 | 0.416 | Time-GCN | 5.241 | 10.102 | 0.100 | | 1.602 | 2.974 | 0.358 | LSTM | 5.512 | 10.347 | 0.105 | | 1.517 | 2.806 | 0.339 | CNN-bi-LSTM | 4.863 | 9.249 | 0.092 | | 1.216 | 2.214 | 0.271 | GCN-LSTM-FCN | 3.100 | 5.841 | 0.059 | | 1.175 | 2.209 | 0.262 | GCN-Transformer | 2.011 | 3.305 | 0.038 | | 1.023 | 1.986 | 0.228 | GraphAgg-iTransformer | 1.685 | 2.691 | 0.032 | | 0.973 | 1.826 | 0.217 | ST-AGCN | 1.715 | 2.892 | 0.033 | | 0.975 | 1.810 | 0.218 | MCGA | 1.519* | 2.578* | 0.029* | | 0.969* | 1.799* | 0.216* |
|
|
|