轻量化YOLOv5s-OCG的轨枕裂纹检测算法
|
董超群,汪战,廖平,谢帅,荣玉杰,周靖淞
|
Lightweight YOLOv5s-OCG rail sleeper crack detection algorithm
|
Chaoqun DONG,Zhan WANG,Ping LIAO,Shuai XIE,Yujie RONG,Jingsong ZHOU
|
|
表 3 经典算法模型与轻量化模型对比实验结果 |
Tab.3 Comparison experimental results between classic algorithm models and lightweight models |
|
Model | Precision/% | Recall/% | mAP@0.5/% | FPS/(帧·s−1) | P/106 | Faster-RCNN | 41.9 | 43.8 | 32.6 | 12 | 137.10 | SSD | 40.3 | 54.4 | 38.1 | 31 | 26.23 | CenterNet | 43.6 | 56.1 | 41.8 | 70 | 32.62 | RetinaNet | 41.1 | 54.8 | 40.0 | 64 | 28.55 | YOLOv3 | 42.5 | 59.7 | 41.9 | 88 | 9.31 | YOLOv5s | 44.4 | 59.7 | 42.9 | 94 | 7.03 | YOLOv7-tiny | 43.1 | 56.8 | 42.0 | 89 | 6.03 | YOLOv5s-GhostNet | 40.8 | 56.1 | 38.5 | 107 | 3.71 | YOLOv5s-shufflenetv2 | 40.1 | 53.5 | 36.2 | 110 | 0.84 | YOLOv5s-OCG | 46.2 | 62.1 | 47.1 | 96 | 5.64 |
|
|
|