轻量化YOLOv5s-OCG的轨枕裂纹检测算法
董超群,汪战,廖平,谢帅,荣玉杰,周靖淞

Lightweight YOLOv5s-OCG rail sleeper crack detection algorithm
Chaoqun DONG,Zhan WANG,Ping LIAO,Shuai XIE,Yujie RONG,Jingsong ZHOU
表 3 经典算法模型与轻量化模型对比实验结果
Tab.3 Comparison experimental results between classic algorithm models and lightweight models
ModelPrecision/%Recall/%mAP@0.5/%FPS/(帧·s−1)P/106
Faster-RCNN41.943.832.612137.10
SSD40.354.438.13126.23
CenterNet43.656.141.87032.62
RetinaNet41.154.840.06428.55
YOLOv342.559.741.9889.31
YOLOv5s44.459.742.9947.03
YOLOv7-tiny43.156.842.0896.03
YOLOv5s-GhostNet40.856.138.51073.71
YOLOv5s-shufflenetv240.153.536.21100.84
YOLOv5s-OCG46.262.147.1965.64