基于变分模型和Transformer的多尺度并行磁共振成像重建
段继忠,李海源

Multi-scale parallel magnetic resonance imaging reconstruction based on variational model and Transformer
Jizhong DUAN,Haiyuan LI
表 5 不同方法在T2大脑数据上重建结果的评价指标
Tab.5 Evaluation metrics for reconstruction results of different networks on fastMRI-T2Brain
评价指标方法3× 1DRU5× 1DRU3× 1DUU5× 1DUU5× 2DRU10× 2DRU5× RADU10× RADU5× 2DPU10× 2DPU
PSNR/dBE2E-VN40.0937.3639.1136.1237.5435.2037.8735.8836.8336.77
RecurrentVN40.3238.0639.4636.3239.1136.9237.6236.0737.1534.73
Deep-SLR36.4735.2634.5532.7937.7235.2537.2934.4537.6336.04
Deepcomplex38.5836.0237.2232.9238.2736.1938.2535.1438.5636.90
DONet38.8136.3537.4733.9738.4436.2638.4735.3338.6136.93
SwinMR36.3135.1635.9134.0436.9134.6337.9934.3136.3531.41
VNTM40.4438.2239.6736.7139.9938.0339.9637.0340.0438.56
SSIME2E-VN0.9720.9590.9680.9510.9640.9520.9660.9520.9620.956
RecurrentVN0.9730.9620.9690.9510.9680.9580.9640.9520.9620.947
Deep-SLR0.9590.9460.9430.9210.9630.9470.9600.9380.9620.949
Deepcomplex0.9660.9500.9570.9200.9640.9510.9630.9420.9640.952
DONet0.9670.9510.9590.9300.9650.9520.9640.9440.9640.953
SwinMR0.9500.9400.9480.9300.9520.9340.9590.9320.9470.913
VNTM0.9730.9620.9690.9520.9710.9620.9700.9550.9710.963