基于变分模型和Transformer的多尺度并行磁共振成像重建
|
段继忠,李海源
|
Multi-scale parallel magnetic resonance imaging reconstruction based on variational model and Transformer
|
Jizhong DUAN,Haiyuan LI
|
|
表 5 不同方法在T2大脑数据上重建结果的评价指标 |
Tab.5 Evaluation metrics for reconstruction results of different networks on fastMRI-T2Brain |
|
评价指标 | 方法 | 3× 1DRU | 5× 1DRU | 3× 1DUU | 5× 1DUU | 5× 2DRU | 10× 2DRU | 5× RADU | 10× RADU | 5× 2DPU | 10× 2DPU | PSNR/dB | E2E-VN | 40.09 | 37.36 | 39.11 | 36.12 | 37.54 | 35.20 | 37.87 | 35.88 | 36.83 | 36.77 | RecurrentVN | 40.32 | 38.06 | 39.46 | 36.32 | 39.11 | 36.92 | 37.62 | 36.07 | 37.15 | 34.73 | Deep-SLR | 36.47 | 35.26 | 34.55 | 32.79 | 37.72 | 35.25 | 37.29 | 34.45 | 37.63 | 36.04 | Deepcomplex | 38.58 | 36.02 | 37.22 | 32.92 | 38.27 | 36.19 | 38.25 | 35.14 | 38.56 | 36.90 | DONet | 38.81 | 36.35 | 37.47 | 33.97 | 38.44 | 36.26 | 38.47 | 35.33 | 38.61 | 36.93 | SwinMR | 36.31 | 35.16 | 35.91 | 34.04 | 36.91 | 34.63 | 37.99 | 34.31 | 36.35 | 31.41 | VNTM | 40.44 | 38.22 | 39.67 | 36.71 | 39.99 | 38.03 | 39.96 | 37.03 | 40.04 | 38.56 | SSIM | E2E-VN | 0.972 | 0.959 | 0.968 | 0.951 | 0.964 | 0.952 | 0.966 | 0.952 | 0.962 | 0.956 | RecurrentVN | 0.973 | 0.962 | 0.969 | 0.951 | 0.968 | 0.958 | 0.964 | 0.952 | 0.962 | 0.947 | Deep-SLR | 0.959 | 0.946 | 0.943 | 0.921 | 0.963 | 0.947 | 0.960 | 0.938 | 0.962 | 0.949 | Deepcomplex | 0.966 | 0.950 | 0.957 | 0.920 | 0.964 | 0.951 | 0.963 | 0.942 | 0.964 | 0.952 | DONet | 0.967 | 0.951 | 0.959 | 0.930 | 0.965 | 0.952 | 0.964 | 0.944 | 0.964 | 0.953 | SwinMR | 0.950 | 0.940 | 0.948 | 0.930 | 0.952 | 0.934 | 0.959 | 0.932 | 0.947 | 0.913 | VNTM | 0.973 | 0.962 | 0.969 | 0.952 | 0.971 | 0.962 | 0.970 | 0.955 | 0.971 | 0.963 |
|
|
|