基于变分模型和Transformer的多尺度并行磁共振成像重建
段继忠,李海源

Multi-scale parallel magnetic resonance imaging reconstruction based on variational model and Transformer
Jizhong DUAN,Haiyuan LI
表 4 不同方法在膝盖数据(矢状面质子密度加权序列)上重建结果的评价指标
Tab.4 Evaluation metrics for reconstruction results of different networks on knee data (Sagittal-PD)
评价指标方法3× 1DRU5× 1DRU3× 1DUU5× 1DUU5× 2DRU10× 2DRU5× RADU10× RADU5× 2DPU10× 2DPU
PSNR/dBE2E-VN36.6434.2536.2732.5237.9535.1836.6833.1236.1733.49
RecurrentVN38.8334.3136.7532.8338.4435.5237.4733.7937.3136.40
Deep-SLR36.2733.9134.6930.4138.6836.0637.9234.3438.4035.98
Deepcomplex37.6735.0235.8631.0639.9337.2938.9735.2439.8737.78
DONet38.2235.7536.5032.0739.9537.5839.1735.6340.3238.00
SwinMR33.9932.6233.4630.8136.3433.2636.9332.9035.3333.79
VNTM39.8337.0838.5333.3340.7638.1839.9036.1841.0838.85
SSIME2E-VN0.9400.9110.9370.8750.9490.9210.9420.8910.9440.913
RecurrentVN0.9540.9020.9380.8750.9490.9200.9390.8860.9440.926
Deep-SLR0.9300.8910.9110.8190.9490.9190.9420.8870.9480.916
Deepcomplex0.9440.9080.9250.8370.9590.9330.9510.9020.9590.937
DONet0.9470.9160.9310.8560.9590.9360.9520.9080.9620.939
SwinMR0.8990.8690.8940.8300.9250.8880.9250.8600.9150.882
VNTM0.9590.9310.9490.8810.9640.9420.9570.9160.9660.946