基于变分模型和Transformer的多尺度并行磁共振成像重建
|
段继忠,李海源
|
Multi-scale parallel magnetic resonance imaging reconstruction based on variational model and Transformer
|
Jizhong DUAN,Haiyuan LI
|
|
表 4 不同方法在膝盖数据(矢状面质子密度加权序列)上重建结果的评价指标 |
Tab.4 Evaluation metrics for reconstruction results of different networks on knee data (Sagittal-PD) |
|
评价指标 | 方法 | 3× 1DRU | 5× 1DRU | 3× 1DUU | 5× 1DUU | 5× 2DRU | 10× 2DRU | 5× RADU | 10× RADU | 5× 2DPU | 10× 2DPU | PSNR/dB | E2E-VN | 36.64 | 34.25 | 36.27 | 32.52 | 37.95 | 35.18 | 36.68 | 33.12 | 36.17 | 33.49 | RecurrentVN | 38.83 | 34.31 | 36.75 | 32.83 | 38.44 | 35.52 | 37.47 | 33.79 | 37.31 | 36.40 | Deep-SLR | 36.27 | 33.91 | 34.69 | 30.41 | 38.68 | 36.06 | 37.92 | 34.34 | 38.40 | 35.98 | Deepcomplex | 37.67 | 35.02 | 35.86 | 31.06 | 39.93 | 37.29 | 38.97 | 35.24 | 39.87 | 37.78 | DONet | 38.22 | 35.75 | 36.50 | 32.07 | 39.95 | 37.58 | 39.17 | 35.63 | 40.32 | 38.00 | SwinMR | 33.99 | 32.62 | 33.46 | 30.81 | 36.34 | 33.26 | 36.93 | 32.90 | 35.33 | 33.79 | VNTM | 39.83 | 37.08 | 38.53 | 33.33 | 40.76 | 38.18 | 39.90 | 36.18 | 41.08 | 38.85 | SSIM | E2E-VN | 0.940 | 0.911 | 0.937 | 0.875 | 0.949 | 0.921 | 0.942 | 0.891 | 0.944 | 0.913 | RecurrentVN | 0.954 | 0.902 | 0.938 | 0.875 | 0.949 | 0.920 | 0.939 | 0.886 | 0.944 | 0.926 | Deep-SLR | 0.930 | 0.891 | 0.911 | 0.819 | 0.949 | 0.919 | 0.942 | 0.887 | 0.948 | 0.916 | Deepcomplex | 0.944 | 0.908 | 0.925 | 0.837 | 0.959 | 0.933 | 0.951 | 0.902 | 0.959 | 0.937 | DONet | 0.947 | 0.916 | 0.931 | 0.856 | 0.959 | 0.936 | 0.952 | 0.908 | 0.962 | 0.939 | SwinMR | 0.899 | 0.869 | 0.894 | 0.830 | 0.925 | 0.888 | 0.925 | 0.860 | 0.915 | 0.882 | VNTM | 0.959 | 0.931 | 0.949 | 0.881 | 0.964 | 0.942 | 0.957 | 0.916 | 0.966 | 0.946 |
|
|
|