大模型知识引导的复合多注意力文档级关系抽取方法
竹志超,李建强,齐宏智,赵青,高齐,李思颖,蔡嘉怡,沈金炎

Large model knowledge-guided composite multi-attention method for document-level relation extraction
Zhichao ZHU,Jianqiang LI,Hongzhi QI,Qing ZHAO,Qi GAO,Siying LI,Jiayi CAI,Jinyan SHEN
表 1 与先进模型的性能对比结果
Tab.1 Performance comparison results with advanced models
类别模型P /%R /%F1/%
Sequence-basedRoBERTa-base79.92±0.7278.60±1.0279.25±0.75
SSAN80.61±1.2281.06±0.8180.83±0.99
Graph-basedGCGCN80.98±0.4681.54±0.7781.26±0.51
GLRE82.42±0.8082.27±0.6382.34±0.70
GRACR83.01±1.3483.13±0.6183.57±0.68
Knowledge-basedDISCO83.66±0.2584.28±0.4683.97±0.42
K-BiOnt85.14±0.3984.36±0.5084.75±0.39
KIRE84.90±0.4485.23±0.3885.06±0.41
KRC85.06±0.2286.00±0.0885.53±0.09
GECANet86.31±0.1585.55±0.1485.93±0.14
LLM-basedChatGLM2-6B37.42±4.3241.21±3.4839.22±3.90
LLaMA3-8B40.56±2.7943.75±3.5042.09±2.83
Qwen-32B45.76±3.6848.20±4.6146.95±4.46
LKCM87.26±0.1687.69±0.0987.47±0.12