基于通道加权的多模态特征融合用于EEG疲劳驾驶检测
|
程文鑫,闫光辉,常文文,吴佰靖,黄亚宁
|
Channel-weighted multimodal feature fusion for EEG-based fatigue driving detection
|
Wenxin CHENG,Guanghui YAN,Wenwen CHANG,Baijing WU,Yaning HUANG
|
|
表 5 相同数据集及相同分类任务下不同模型的对比实验结果 |
Tab.5 Comparative experimental results of different models with the same dataset and the same classification task |
|
方法 | A | | P | | S | | M | | F1 | D1 | D2 | D1 | D2 | D1 | D2 | D1 | D2 | D1 | D2 | RF[26] | 0.740 0 | 0.668 0 | | 0.740 0 | 0.698 9 | | 0.540 0 | 0.639 8 | | 0.260 0 | 0.332 0 | | 0.540 0 | 0.611 1 | LSTM[27] | 0.881 3 | 0.853 5 | 0.914 7 | 0.889 0 | 0.884 6 | 0.877 4 | 0.118 7 | 0.146 5 | 0.898 2 | 0.857 7 | EEG-Conv[28] | 0.779 6 | 0.802 2 | 0.853 9 | 0.882 6 | 0.585 3 | 0.662 5 | 0.220 4 | 0.197 8 | 0.632 7 | 0.652 4 | EEG-TCNet[29] | 0.813 3 | 0.851 5 | 0.697 7 | 0.800 5 | 0.674 3 | 0.700 4 | 0.186 7 | 0.148 5 | 0.674 3 | 0.708 8 | EEGNet[30] | 0.798 9 | 0.643 5 | 0.745 2 | 0.625 5 | 0.752 2 | 0.653 1 | 0.201 1 | 0.356 5 | 0.744 2 | 0.621 1 | ESTCNN[31] | 0.790 6 | 0.772 4 | 0.767 1 | 0.797 9 | 0.789 8 | 0.766 5 | 0.209 4 | 0.227 6 | 0.779 6 | 0.795 8 | CSF-GTNet[15] | 0.821 1 | 0.841 5 | 0.772 3 | 0.833 4 | 0.843 3 | 0.841 9 | 0.178 9 | 0.158 5 | 0.780 9 | 0.814 9 | T-A-MFFNet[5] | 0.858 6 | 0.865 4 | 0.733 9 | 0.892 3 | 0.826 5 | 0.843 7 | 0.141 4 | 0.134 6 | 0.777 4 | 0.800 5 | 本研究方法 | 0.933 7 | 0.907 8 | 0.955 9 | 0.924 6 | 0.934 5 | 0.919 7 | 0.066 3 | 0.092 2 | 0.945 1 | 0.922 1 |
|
|
|