基于通道加权的多模态特征融合用于EEG疲劳驾驶检测
程文鑫,闫光辉,常文文,吴佰靖,黄亚宁

Channel-weighted multimodal feature fusion for EEG-based fatigue driving detection
Wenxin CHENG,Guanghui YAN,Wenwen CHANG,Baijing WU,Yaning HUANG
表 4 单被试数据的疲劳驾驶检测准确率对比结果
Tab.4 Comparison of fatigue driving detection accuracy for single-subject data
D1D2
被试PCNNGRUPCNN-GRU被试PCNNGRUPCNN-GRU
10.956 70.917 90.951 810.862 50.852 50.885 8
20.947 70.932 20.971 420.900 60.910 70.919 0
30.977 40.978 90.963 930.880 40.899 20.908 6
40.783 10.797 40.908 940.872 50.888 10.890 2
50.865 20.882 50.912 750.920 10.910 90.922 6
60.819 30.790 70.874 360.862 20.854 40.865 6
70.893 10.856 90.941 370.901 40.900 90.919 4
80.910 80.923 20.942 880.833 10.829 90.855 9
90.939 80.956 30.970 690.921 80.919 10.930 5
100.982 70.985 70.970 6100.882 50.878 90.870 6
110.878 80.881 80.936 8110.939 80.946 00.947 3
120.825 00.820 00.872 0120.860 10.855 50.866 3
130.896 10.914 90.923 2130.921 70.933 90.948 8
140.920 90.925 50.931 5140.844 80.858 50.868 7
150.980 00.970 00.990 0150.931 50.933 10.945 4
160.839 90.838 10.875 0160.939 90.928 70.932 6
170.817 40.832 80.908 9170.845 80.813 90.881 1
180.874 30.917 90.929 2180.877 20.892 50.904 8
190.978 20.985 70.987 9190.910 50.909 10.914 5
200.951 10.930 70.869 7200.862 20.844 20.874 8
210.959 00.941 30.988 0210.939 30.940 10.949 6
220.991 70.991 00.988 7220.909 90.912 90.937 8
230.952 60.939 80.866 0230.948 80.932 40.956 6
平均准确率0.910 50.909 20.933 7240.890 10.909 30.898 6
标准差0.061 30.059 80.041 1250.878 70.856 70.904 4
260.889 40.848 40.903 1
平均准确率0.893 30.890 80.907 8
标准差0.032 40.036 80.029 9