基于Convnextv2与纹理边缘引导的伪装目标检测
|
付家瑞,李兆飞,周豪,黄惟
|
Camouflaged object detection based on Convnextv2 and texture-edge guidance
|
Jiarui FU,Zhaofei LI,Hao ZHOU,Wei HUANG
|
|
表 2 CTEGAFNet与其他11种算法在NC4K和MICAI_TE上的对比结果 |
Tab.2 Comparison result of CTEGAFNet and other 11 methods in NC4K and MICAI_TE |
|
网络 | NC4K | | MICAI_TE | Np/106 | ${S_\alpha } $ | ${F_\beta ^{\omega}}$ | ${E_\phi }$ | ${\mathrm{MAE}}$ | | ${S_\alpha } $ | ${F_\beta ^{\omega}} $ | ${E_\phi } $ | ${\mathrm{MAE}} $ | MSCAF | 0.887 | 0.839 | 0.935 | 0.032 | | 0.890 | 0.819 | 0.946 | 0.014 | 28.33 | SARNet | 0.886 | 0.842 | 0.937 | 0.032 | | 0.888 | 0.811 | 0.944 | 0.014 | 44.79 | FSNet | 0.891 | 0.866 | 0.940 | 0.031 | | 0.887 | 0.811 | 0.943 | 0.014 | 124.53 | HitNet | 0.870 | 0.825 | 0.921 | 0.039 | | 0.886 | 0.822 | 0.955 | 0.014 | 24.53 | SegMaR | 0.841 | 0.781 | 0.905 | 0.046 | | 0.874 | 0.782 | 0.920 | 0.019 | 68.04 | SINet | 0.808 | 0.723 | 0.871 | 0.058 | | 0.678 | 0.387 | 0.624 | 0.052 | 48.95 | SINetV2 | 0.847 | 0.770 | 0.903 | 0.048 | | 0.733 | 0.508 | 0.739 | 0.038 | 26.98 | C2FNet | 0.838 | 0.762 | 0.897 | 0.049 | | 0.867 | 0.776 | 0.933 | 0.019 | 26.30 | BGNet | 0.851 | 0.788 | 0.907 | 0.044 | | 0.725 | 0.520 | 0.787 | 0.043 | 74.20 | DGNet | 0.857 | 0.784 | 0.911 | 0.042 | | 0.872 | 0.779 | 0.928 | 0.018 | 21.02 | ZoomNet | 0.853 | 0.784 | 0.907 | 0.043 | | 0.845 | 0.725 | 0.843 | 0.030 | 32.38 | CTEGAFNet | 0.900 | 0.859 | 0.940 | 0.028 | | 0.895 | 0.827 | 0.953 | 0.013 | 92.94 |
|
|
|