基于Convnextv2与纹理边缘引导的伪装目标检测
付家瑞,李兆飞,周豪,黄惟

Camouflaged object detection based on Convnextv2 and texture-edge guidance
Jiarui FU,Zhaofei LI,Hao ZHOU,Wei HUANG
表 1 CTEGAFNet与其他11种算法在CAMO和COD10K上的对比结果
Tab.1 Comparison result of CTEGAFNet and other 11 methods in CAMO and COD10K
网络CAMO-TESTCOD10K-TESTNp/106
$ S_{\alpha} $$ {F_\beta ^{\omega}} $$ E_{\phi} $$ \mathrm{MAE} $$ S_{\alpha} $$ {F_\beta ^{\omega}} $$ E_{\phi} $$ \mathrm{MAE} $
MSCAF0.8730.8280.9290.0460.8650.7750.9270.02428.33
SARNet0.8680.8280.9270.0470.8640.8000.9310.02444.79
FSNet0.8800.8610.9330.0410.8700.8100.9380.023124.53
HitNet0.8440.8010.9020.0570.8680.7980.9320.02424.53
SegMaR0.8150.7420.8720.0710.8330.7240.8950.03368.04
SINet0.7450.6440.8290.0920.7760.6310.8640.04348.95
SINetV20.8200.7430.8820.0700.8150.6800.8870.03726.98
C2FNet0.7960.7190.8640.0800.8130.6860.8900.03626.30
BGNet0.8120.7490.8700.0730.8310.7220.9010.03374.20
DGNet0.8390.7690.9010.0570.8220.6930.8960.03321.02
ZoomNet0.8200.7520.8830.0660.8380.7290.8930.02932.38
CTEGAFNet0.8930.8580.9370.0370.8790.8010.9330.02192.94