基于Convnextv2与纹理边缘引导的伪装目标检测
|
付家瑞,李兆飞,周豪,黄惟
|
Camouflaged object detection based on Convnextv2 and texture-edge guidance
|
Jiarui FU,Zhaofei LI,Hao ZHOU,Wei HUANG
|
|
表 1 CTEGAFNet与其他11种算法在CAMO和COD10K上的对比结果 |
Tab.1 Comparison result of CTEGAFNet and other 11 methods in CAMO and COD10K |
|
网络 | CAMO-TEST | | COD10K-TEST | Np/106 | $ S_{\alpha} $ | $ {F_\beta ^{\omega}} $ | $ E_{\phi} $ | $ \mathrm{MAE} $ | | $ S_{\alpha} $ | $ {F_\beta ^{\omega}} $ | $ E_{\phi} $ | $ \mathrm{MAE} $ | MSCAF | 0.873 | 0.828 | 0.929 | 0.046 | | 0.865 | 0.775 | 0.927 | 0.024 | 28.33 | SARNet | 0.868 | 0.828 | 0.927 | 0.047 | | 0.864 | 0.800 | 0.931 | 0.024 | 44.79 | FSNet | 0.880 | 0.861 | 0.933 | 0.041 | | 0.870 | 0.810 | 0.938 | 0.023 | 124.53 | HitNet | 0.844 | 0.801 | 0.902 | 0.057 | | 0.868 | 0.798 | 0.932 | 0.024 | 24.53 | SegMaR | 0.815 | 0.742 | 0.872 | 0.071 | | 0.833 | 0.724 | 0.895 | 0.033 | 68.04 | SINet | 0.745 | 0.644 | 0.829 | 0.092 | | 0.776 | 0.631 | 0.864 | 0.043 | 48.95 | SINetV2 | 0.820 | 0.743 | 0.882 | 0.070 | | 0.815 | 0.680 | 0.887 | 0.037 | 26.98 | C2FNet | 0.796 | 0.719 | 0.864 | 0.080 | | 0.813 | 0.686 | 0.890 | 0.036 | 26.30 | BGNet | 0.812 | 0.749 | 0.870 | 0.073 | | 0.831 | 0.722 | 0.901 | 0.033 | 74.20 | DGNet | 0.839 | 0.769 | 0.901 | 0.057 | | 0.822 | 0.693 | 0.896 | 0.033 | 21.02 | ZoomNet | 0.820 | 0.752 | 0.883 | 0.066 | | 0.838 | 0.729 | 0.893 | 0.029 | 32.38 | CTEGAFNet | 0.893 | 0.858 | 0.937 | 0.037 | | 0.879 | 0.801 | 0.933 | 0.021 | 92.94 |
|
|
|