改进YOLOv8s的轻量级无人机航拍小目标检测算法
翟亚红,陈雅玲,徐龙艳,龚玉

Improved YOLOv8s lightweight small target detection algorithm of UAV aerial image
Yahong ZHAI,Yaling CHEN,Longyan XU,Yu GONG
表 2 不同算法在VisDrone 2019数据集上的对比实验结果
Tab.2 Comparison of result of different algorithms on VisDrone 2019 dataset
模型AP/%mAP50/%
pedestrianpeoplebicyclecarvantrucktricycleawning-tricyclebusmotor
RetinaNet28.620.39.873.233.431.815.514.358.025.331.4
Faster R-CNN[19]22.214.87.654.631.521.614.88.634.921.423.2
YOLOv3-LITE[20]34.523.47.970.831.321.915.26.240.932.728.5
YOLOv5n32.626.16.969.028.123.715.58.936.432.127.9
YOLOv5s40.032.112.673.936.832.922.012.847.539.235.0
TPH-YOLOv5[4]29.016.715.768.949.845.127.324.761.830.936.9
YOLOv7-tiny[21]48.340.312.882.442.332.923.313.656.649.240.2
YOLOv8n39.538.528.59.243.334.131.726.047.140.533.8
YOLOv8s41.632.213.579.345.036.628.315.954.243.438.8
SPE_ YOLOv8s[22]43.331.518.982.746.943.125.623.862.342.542.1
PVswin-YOLOv8s[23]45.935.716.481.549.142.432.817.762.948.243.3
YOLOv9t36.222.010.971.744.144.621.218.460.833.336.2
YOLOv10s41.124.616.174.948.451.824.521.864.139.840.7
RTA-YOLOv8s52.142.519.084.548.939.031.219.758.653.244.9