改进YOLOv8s的轻量级无人机航拍小目标检测算法
|
翟亚红,陈雅玲,徐龙艳,龚玉
|
Improved YOLOv8s lightweight small target detection algorithm of UAV aerial image
|
Yahong ZHAI,Yaling CHEN,Longyan XU,Yu GONG
|
|
表 2 不同算法在VisDrone 2019数据集上的对比实验结果 |
Tab.2 Comparison of result of different algorithms on VisDrone 2019 dataset |
|
模型 | AP/% | mAP50/% | pedestrian | people | bicycle | car | van | truck | tricycle | awning-tricycle | bus | motor | RetinaNet | 28.6 | 20.3 | 9.8 | 73.2 | 33.4 | 31.8 | 15.5 | 14.3 | 58.0 | 25.3 | 31.4 | Faster R-CNN[19] | 22.2 | 14.8 | 7.6 | 54.6 | 31.5 | 21.6 | 14.8 | 8.6 | 34.9 | 21.4 | 23.2 | YOLOv3-LITE[20] | 34.5 | 23.4 | 7.9 | 70.8 | 31.3 | 21.9 | 15.2 | 6.2 | 40.9 | 32.7 | 28.5 | YOLOv5n | 32.6 | 26.1 | 6.9 | 69.0 | 28.1 | 23.7 | 15.5 | 8.9 | 36.4 | 32.1 | 27.9 | YOLOv5s | 40.0 | 32.1 | 12.6 | 73.9 | 36.8 | 32.9 | 22.0 | 12.8 | 47.5 | 39.2 | 35.0 | TPH-YOLOv5[4] | 29.0 | 16.7 | 15.7 | 68.9 | 49.8 | 45.1 | 27.3 | 24.7 | 61.8 | 30.9 | 36.9 | YOLOv7-tiny[21] | 48.3 | 40.3 | 12.8 | 82.4 | 42.3 | 32.9 | 23.3 | 13.6 | 56.6 | 49.2 | 40.2 | YOLOv8n | 39.5 | 38.5 | 28.5 | 9.2 | 43.3 | 34.1 | 31.7 | 26.0 | 47.1 | 40.5 | 33.8 | YOLOv8s | 41.6 | 32.2 | 13.5 | 79.3 | 45.0 | 36.6 | 28.3 | 15.9 | 54.2 | 43.4 | 38.8 | SPE_ YOLOv8s[22] | 43.3 | 31.5 | 18.9 | 82.7 | 46.9 | 43.1 | 25.6 | 23.8 | 62.3 | 42.5 | 42.1 | PVswin-YOLOv8s[23] | 45.9 | 35.7 | 16.4 | 81.5 | 49.1 | 42.4 | 32.8 | 17.7 | 62.9 | 48.2 | 43.3 | YOLOv9t | 36.2 | 22.0 | 10.9 | 71.7 | 44.1 | 44.6 | 21.2 | 18.4 | 60.8 | 33.3 | 36.2 | YOLOv10s | 41.1 | 24.6 | 16.1 | 74.9 | 48.4 | 51.8 | 24.5 | 21.8 | 64.1 | 39.8 | 40.7 | RTA-YOLOv8s | 52.1 | 42.5 | 19.0 | 84.5 | 48.9 | 39.0 | 31.2 | 19.7 | 58.6 | 53.2 | 44.9 |
|
|
|