基于对比学习的可扩展交通图像自动标注方法
侯越,李前辉,袁鹏,张鑫,王甜甜,郝紫微

Scalable traffic image auto-annotation method based on contrastive learning
Yue HOU,Qianhui LI,Peng YUAN,Xin ZHANG,Tiantian WANG,Ziwei HAO
表 2 不同算法在UA-DETRAC数据集上的实验结果
Tab.2 Experimental result of different algorithms on UA-DETRAC dataset
模型AP0.5/%mAP0.5/%mAP0.5:0.95/%
carbusvanothers
Yolov482.180.371.569.775.954.5
SSD85.384.773.175.779.758.8
DERT88.487.674.282.983.362.5
Faster RCNN88.787.974.383.183.562.9
Cascade RCNN90.398.775.183.384.663.7
Yolov5s88.187.374.282.483.061.6
Yolov8s93.492.675.587.387.267.5
SIAM-CML92.591.774.886.686.466.9