基于对比学习的可扩展交通图像自动标注方法
侯越,李前辉,袁鹏,张鑫,王甜甜,郝紫微

Scalable traffic image auto-annotation method based on contrastive learning
Yue HOU,Qianhui LI,Peng YUAN,Xin ZHANG,Tiantian WANG,Ziwei HAO
表 1 不同算法在BIT交通数据集上的实验结果
Tab.1 Experimental result of different algorithms on BIT traffic dataset
模型AP0.5/%mAP0.5/%mAP0.5:0.95/%
busmicrobusminivansedansuvtruck
Yolov4[20]94.193.690.392.390.593.292.376.7
SSD[12]95.394.791.693.292.196.193.877.1
DERT[21]96.896.393.795.594.496.595.679.6
Faster RCNN[5]97.096.594.295.894.196.595.779.9
Cascade RCNN[7]97.897.294.396.794.998.196.580.4
Yolov5s[22]96.395.792.894.693.996.795.078.5
Yolov8s[23]98.397.895.197.595.798.297.181.2
SIAM-CML99.198.794.898.995.298.997.681.5