基于多目标约束的无人机光顺路径生成全局优化方法
|
廖榆信,王伟,滕卫明,贺海晏,王战,王进
|
Multi-objective constraint-based smooth path generation for UAVs global optimization method
|
Yuxin LIAO,Wei WANG,Weiming TENG,Haiyan HE,Zhan WANG,Jin WANG
|
|
表 2 不同算法在3种场景中的优化性能对比 |
Tab.2 Performance comparison of different algorithms for optimization in three scenarios |
|
场景 | 算法 | $ {L}_{t,i} $/m | $ {\varphi }_{L} $/% | $ {N}_{t,i} $/s | $ {\varphi }_{t} $/% | $ {R}_{t,i} $ | $ {\varphi }_{r} $/% | 场景一 | 改进RRT* | 164.9 | — | 37.83 | 48.43 | 259.08 | 71.68 | 改进A* | 156.2 | 5.28 | 73.36 | — | 914.93 | — | NSGA-Ⅱ | 154.6 | 6.25 | 35.76 | 51.25 | 108.25 | 88.17 | NSGA-Ⅲ | 149.7 | 9.22 | 37.03 | 49.52 | 101.85 | 88.87 | 场景二 | 改进RRT* | 158.9 | — | 36.43 | 33.08 | 178.89 | 43.96 | 改进A* | 157.5 | 0.88 | 54.44 | — | 319.23 | — | NSGA-Ⅱ | 144.8 | 8.87 | 24.08 | 55.76 | 29.04 | 90.90 | NSGA-Ⅲ | 144.0 | 9.37 | 18.16 | 66.64 | 25.19 | 92.11 | 场景三 | 改进RRT* | 166.42 | — | 37.36 | 50.07 | 262.96 | 55.55 | 改进A* | 162.42 | 2.40 | 74.83 | — | 591.59 | — | NSGA-Ⅱ | 153.91 | 7.52 | 27.59 | 63.13 | 74.97 | 87.33 | NSGA-Ⅲ | 152.80 | 8.18 | 24.24 | 67.61 | 70.20 | 88.13 |
|
|
|