用于无人机遥感图像的高精度实时语义分割网络
魏新雨,饶蕾,范光宇,陈年生,程松林,杨定裕

High-precision real-time semantic segmentation network for UAV remote sensing images
Xinyu WEI,Lei RAO,Guangyu FAN,Niansheng CHEN,Songlin CHENG,Dingyu YANG
表 7 Potsdam测试集上分割算法的性能比较
Tab.7 Performance comparison of segmentation algorithms on Potsdam test set %
算法IoUmIoU
不透水表面建筑物低植被树木车辆
FCN 8S86.191.576.377.490.784.4
BiSeNet87.291.776.978.991.085.1
PSPNet87.992.177.179.791.585.7
DeepLab V3+87.792.277.479.491.285.5
BANet88.992.778.279.891.486.2
CoaT88.592.978.580.491.986.1
SegFormer87.992.678.879.991.686.0
DC-Swin88.793.378.080.192.086.5
UNetFormer89.093.579.280.591.986.8
MobileViT V388.993.779.080.292.186.8
RSSFormer89.193.779.880.491.786.9
SSFNet89.393.979.180.992.287.1