多分辨率趋势周期解耦交互的交通流预测
|
侯越,王甜甜,张鑫,尹杰
|
Traffic flow forecasting with multi-resolution trend period decoupling interaction
|
Yue HOU,Tiantian WANG,Xin ZHANG,Jie YIN
|
|
表 2 不同模型在2个数据集不同时间步长下的交通流预测准确度 |
Tab.2 Traffic flow prediction accuracy of different models at time steps in two datasets |
|
模型 | t/min | PeMSD4 | | PeMSD8 | MAE | RMSE | MAPE | | MAE | RMSE | MAPE | HA | 5 25 45 | 24.020 28.760 35.180 | 39.930 45.260 53.870 | 0.201 0.219 0.253 | | 20.820 26.020 31.360 | 34.670 39.890 46.570 | 0.171 0.187 0.212 | SVR | 5 25 45 | 26.007 27.460 29.580 | 38.630 40.360 42.820 | 0.195 0.205 0.223 | | 18.047 19.220 21.100 | 26.504 27.980 30.140 | 0.130 0.138 0.152 | LSTM | 5 25 45 | 22.721 24.082 24.401 | 37.487 39.394 39.883 | 0.159 0.168 0.170 | | 20.008 22.244 22.322 | 31.837 35.799 35.724 | 0.125 0.134 0.139 | CNN_LSTM | 5 25 45 | 22.079 22.481 22.485 | 35.723 36.601 36.636 | 0.145 0.156 0.158 | | 20.205 21.014 21.360 | 31.540 32.719 33.356 | 0.127 0.131 0.133 | TCN | 5 25 45 | 18.345 22.504 26.269 | 29.095 35.371 40.333 | 0.122 0.146 0.172 | | 13.721 19.461 20.821 | 21.295 31.443 32.082 | 0.086 0.117 0.128 | ASTGCN | 5 25 45 | 17.737 20.927 23.342 | 28.343 33.045 36.429 | 0.108 0.125 0.138 | | 14.241 18.000 20.531 | 21.787 27.842 31.581 | 0.090 0.105 0.116 | SCINet | 5 25 45 | 19.109 19.532 20.368 | 29.473 31.306 32.259 | 0.120 0.125 0.126 | | 13.989 16.729 17.655 | 21.798 26.490 26.876 | 0.087 0.099 0.114 | MTPDI | 5 25 45 | 11.153 13.635 14.453 | 17.029 21.791 22.248 | 0.091 0.106 0.111 | | 9.091 10.355 10.763 | 13.485 16.060 16.270 | 0.061 0.068 0.073 |
|
|
|