基于上下文信息融合与动态采样的主板缺陷检测方法
鞠文博,董华军

Motherboard defect detection method based on context information fusion and dynamic sampling
Wenbo JU,Huajun DONG
表 7 GC10-DET数据集上本研究算法与其他算法的精度对比
Tab.7 Comparison of accuracy between proposed algorithm and other algorithms on GC10-DET dataset
模型P/%mAP/%
冲孔焊缝月牙水斑油斑丝斑异物压痕折痕腰折
Faster RCNN94.475.186.059.965.550.124.524.455.088.362.3
Cascade RCNN98.489.894.873.072.360.218.534.616.766.662.5
TridenNet[32]94.566.495.876.772.967.238.741.738.582.167.5
RetinaNet97.676.093.665.253.759.29.921.83.282.656.3
SSD91.674.492.855.261.268.916.815.552.787.261.6
Swin transformer97.686.594.670.064.861.614.128.08.388.261.4
YOLOv7tiny95.279.196.181.560.158.234.923.353.178.966.0
YOLOv8s96.088.396.984.657.961.322.629.951.181.867.1
Yolov995.687.097.083.556.662.027.121.462.887.168.0
BC-YOLO(本研究算法)98.590.698.085.961.258.729.039.864.688.271.5