基于上下文信息融合与动态采样的主板缺陷检测方法
|
鞠文博,董华军
|
Motherboard defect detection method based on context information fusion and dynamic sampling
|
Wenbo JU,Huajun DONG
|
|
表 7 GC10-DET数据集上本研究算法与其他算法的精度对比 |
Tab.7 Comparison of accuracy between proposed algorithm and other algorithms on GC10-DET dataset |
|
模型 | P/% | mAP/% | 冲孔 | 焊缝 | 月牙 | 水斑 | 油斑 | 丝斑 | 异物 | 压痕 | 折痕 | 腰折 | Faster RCNN | 94.4 | 75.1 | 86.0 | 59.9 | 65.5 | 50.1 | 24.5 | 24.4 | 55.0 | 88.3 | 62.3 | Cascade RCNN | 98.4 | 89.8 | 94.8 | 73.0 | 72.3 | 60.2 | 18.5 | 34.6 | 16.7 | 66.6 | 62.5 | TridenNet[32] | 94.5 | 66.4 | 95.8 | 76.7 | 72.9 | 67.2 | 38.7 | 41.7 | 38.5 | 82.1 | 67.5 | RetinaNet | 97.6 | 76.0 | 93.6 | 65.2 | 53.7 | 59.2 | 9.9 | 21.8 | 3.2 | 82.6 | 56.3 | SSD | 91.6 | 74.4 | 92.8 | 55.2 | 61.2 | 68.9 | 16.8 | 15.5 | 52.7 | 87.2 | 61.6 | Swin transformer | 97.6 | 86.5 | 94.6 | 70.0 | 64.8 | 61.6 | 14.1 | 28.0 | 8.3 | 88.2 | 61.4 | YOLOv7tiny | 95.2 | 79.1 | 96.1 | 81.5 | 60.1 | 58.2 | 34.9 | 23.3 | 53.1 | 78.9 | 66.0 | YOLOv8s | 96.0 | 88.3 | 96.9 | 84.6 | 57.9 | 61.3 | 22.6 | 29.9 | 51.1 | 81.8 | 67.1 | Yolov9 | 95.6 | 87.0 | 97.0 | 83.5 | 56.6 | 62.0 | 27.1 | 21.4 | 62.8 | 87.1 | 68.0 | BC-YOLO(本研究算法) | 98.5 | 90.6 | 98.0 | 85.9 | 61.2 | 58.7 | 29.0 | 39.8 | 64.6 | 88.2 | 71.5 |
|
|
|