基于自相似嵌入和全局特征重排序的图像检索方法
|
陈捷丰,姚金良
|
Image retrieval method based on self-similar embedding and global feature reranking
|
Jiefeng CHEN,Jinliang YAO
|
|
表 1 RParis6K数据集和ROxford5K数据集上各个方法的评估结果 |
Tab.1 Evaluation results of various methods on RParis6K and ROxford5K datasets |
|
类别 | 方法 | mAP/% | Medium(ROxf) | Medium(RPar) | Hard(ROxf) | Hard(RPar) | 全局特征
| R-MAC[11] | 75.14 | 85.28 | 53.77 | 71.28 | GeM-AP[12] | 67.50 | 80.10 | 42.80 | 60.60 | SOLAR[14] | 79.65 | 88.63 | 59.99 | 75.26 | DELG[33] | 76.40 | 86.74 | 55.92 | 72.60 | DOLG[16] | 80.50 | 89.81 | 58.82 | 77.70 | GLAM[34] | 78.60 | 88.50 | 60.20 | 76.80 | Swin-S-DALG[35] | 79.94 | 90.04 | 57.55 | 79.06 | SpCa[36] | 81.55 | 88.60 | 61.69 | 76.21 | SENet[37] | 81.90 | 90.00 | 63.00 | 78.10 | 局部特征聚合+重排序
| HesAff-rSIFT-ASMK+SP[38] | 60.60 | 61.40 | 36.70 | 35.50 | DELF-ASMK+SP[5] | 67.80 | 76.90 | 43.10 | 55.40 | DELF-R-ASMK+SP[39] | 76.00 | 80.20 | 52.40 | 58.60 | HOW-ASMK[21] | 79.40 | 81.60 | 56.90 | 62.40 | Fire[22] | 81.80 | 85.30 | 61.20 | 70.00 | 全局特征+局部特征重排序 | GeM+DSM[40] | 65.30 | 77.40 | 39.20 | 56.20 | DELG+SP[33] | 81.20 | 87.20 | 64.00 | 72.80 | 全局特征 | 本研究方法(未重排序) | 77.21 | 87.79 | 60.85 | 75.17 | 全局特征+全局特征再重排序 | 本研究方法 | 82.11 | 90.38 | 66.85 | 80.24 |
|
|
|