基于自相似嵌入和全局特征重排序的图像检索方法
陈捷丰,姚金良

Image retrieval method based on self-similar embedding and global feature reranking
Jiefeng CHEN,Jinliang YAO
表 1 RParis6K数据集和ROxford5K数据集上各个方法的评估结果
Tab.1 Evaluation results of various methods on RParis6K and ROxford5K datasets
类别方法mAP/%
Medium(ROxf)Medium(RPar)Hard(ROxf)Hard(RPar)
全局特征
R-MAC[11]75.1485.2853.7771.28
GeM-AP[12]67.5080.1042.8060.60
SOLAR[14]79.6588.6359.9975.26
DELG[33]76.4086.7455.9272.60
DOLG[16]80.5089.8158.8277.70
GLAM[34]78.6088.5060.2076.80
Swin-S-DALG[35]79.9490.0457.5579.06
SpCa[36]81.5588.6061.6976.21
SENet[37]81.9090.0063.0078.10
局部特征聚合+重排序
HesAff-rSIFT-ASMK+SP[38]60.6061.4036.7035.50
DELF-ASMK+SP[5]67.8076.9043.1055.40
DELF-R-ASMK+SP[39]76.0080.2052.4058.60
HOW-ASMK[21]79.4081.6056.9062.40
Fire[22]81.8085.3061.2070.00
全局特征+局部特征重排序GeM+DSM[40]65.3077.4039.2056.20
DELG+SP[33]81.2087.2064.0072.80
全局特征本研究方法(未重排序)77.2187.7960.8575.17
全局特征+全局特征再重排序本研究方法82.1190.3866.8580.24