基于EWT-LSTM的工业机器人关节异常检测
蒋沁诚,陶建峰,王洋洋,张宇磊,刘成良

EWT-LSTM based industrial robot joint anomaly detection
Qincheng JIANG,Jianfeng TAO,Yangyang WANG,Yulei ZHANG,Chengliang LIU
表 1 CNN-LSTM-Attention模型的详细信息
Tab.1 Detail of proposed CNN-LSTM-Attention model
层编号描述详细信息输出尺寸
Layer 1InputInput_shape = (12,6)6×12
Layer 2Conv1Dfilters=128, kernel_size=1, activation=ReLU, padding='same'128×12
Layer 3AveragePooling1Dpool_size=4128×3
Layer 4ZeroPadding1Dpadding=(1, 0)128×4
Layer 5Conv1Dfilters=128, kernel_size=1, activation=ReLU, padding='same'128×4
Layer 6AveragePooling1Dpool_size=4128×1
Layer 7Dropout0.2128×1
Layer 8BidirectionalUnits=32, return_sequences=True64×1
Layer 9Dropout0.264×1
Layer 10Permute(2,1)1×64
Layer 11Denselayer_size = 64, activation='softmax'1×64
Layer 12Permute(2,1)64×1
Layer 13Concatenate[Layer 9, Layer 12]128×1
Layer 14Flatten128
Layer 15Denselayer_size = 6, activation='sigmoid'6