基于CNN和Transformer聚合的遥感图像超分辨率重建
|
胡明志,孙俊,杨彪,常开荣,杨俊龙
|
Super-resolution reconstruction of remote sensing image based on CNN and Transformer aggregation
|
Mingzhi HU,Jun SUN,Biao YANG,Kairong CHANG,Junlong YANG
|
|
表 2 不同消融模块在AID测试集6个场景下的PSNR和SSIM指标 |
Tab.2 PSNR and SSIM metrics of different ablation modules on six scenes selected from AID test set |
|
方法 | 飞机场 | | 城市 | | 农田 | | 停车场 | | 运动场 | | 港口 | PSNR/dB | SSIM | | PSNR/dB | SSIM | | PSNR/dB | SSIM | | PSNR/dB | SSIM | | PSNR/dB | SSIM | | PSNR/dB | SSIM | B | 26.88 | 0.7046 | | 24.65 | 0.6516 | | 29.67 | 0.7355 | | 20.63 | 0.6037 | | 26.47 | 0.7148 | | 22.82 | 0.7018 | B+H | 28.55 | 0.7504 | | 26.31 | 0.6929 | | 31.47 | 0.7794 | | 22.28 | 0.6422 | | 28.30 | 0.7600 | | 24.56 | 0.7343 | B+H+G | 28.60 | 0.7511 | | 26.32 | 0.7026 | | 31.53 | 0.7790 | | 22.67 | 0.6774 | | 28.53 | 0.7668 | | 24.67 | 0.7512 | B+H+G+A1 | 29.07 | 0.7717 | | 26.82 | 0.7283 | | 32.12 | 0.7963 | | 23.07 | 0.7018 | | 29.08 | 0.7883 | | 25.10 | 0.7724 | B+H+G+A | 29.50 | 0.7857 | | 27.27 | 0.7462 | | 32.43 | 0.8068 | | 23.45 | 0.7292 | | 29.57 | 0.8060 | | 25.39 | 0.7860 |
|
|
|