基于CNN和Transformer聚合的遥感图像超分辨率重建
|
胡明志,孙俊,杨彪,常开荣,杨俊龙
|
Super-resolution reconstruction of remote sensing image based on CNN and Transformer aggregation
|
Mingzhi HU,Jun SUN,Biao YANG,Kairong CHANG,Junlong YANG
|
|
表 1 AID测试数据集6个随机场景下不同模型的PSNR和SSIM指标 |
Tab.1 PSNR and SSIM metrics of different models on six randomly selected scenes from AID test dataset |
|
模型 | 飞机场 | | 城市 | | 农田 | | 停车场 | | 运动场 | | 港口 | PSNR/dB | SSIM | | PSNR/dB | SSIM | | PSNR/dB | SSIM | | PSNR/dB | SSIM | | PSNR/dB | SSIM | | PSNR/dB | SSIM | Bicubic | 26.22 | 0.6871 | | 23.73 | 0.6182 | | 29.49 | 0.7347 | | 19.73 | 0.5451 | | 25.45 | 0.6905 | | 22.23 | 0.6699 | Swinir | 24.43 | 0.6598 | | 22.19 | 0.5867 | | 28.15 | 0.7142 | | 17.79 | 0.5126 | | 24.20 | 0.6666 | | 20.09 | 0.6401 | CDC | 24.82 | 0.6272 | | 22.50 | 0.5867 | | 26.87 | 0.6601 | | 20.04 | 0.5547 | | 24.11 | 0.6550 | | 21.71 | 0.6691 | DAN | 25.70 | 0.6922 | | 23.60 | 0.6277 | | 28.75 | 0.7307 | | 19.72 | 0.5711 | | 25.31 | 0.6960 | | 21.45 | 0.6682 | real-Esrgan | 27.81 | 0.7296 | | 24.82 | 0.6768 | | 30.20 | 0.7664 | | 21.06 | 0.6468 | | 26.33 | 0.7338 | | 22.84 | 0.7316 | BSRGAN | 27.74 | 0.7318 | | 25.24 | 0.6754 | | 30.80 | 0.7704 | | 21.79 | 0.6413 | | 27.10 | 0.7351 | | 23.57 | 0.7328 | MM-realSR | 27.83 | 0.7649 | | 25.64 | 0.7225 | | 30.44 | 0.7852 | | 22.42 | 0.6949 | | 27.64 | 0.7826 | | 23.95 | 0.7699 | realHAT-TG | 27.76 | 0.7470 | | 25.34 | 0.6933 | | 30.53 | 0.7739 | | 21.96 | 0.6622 | | 26.93 | 0.7495 | | 23.54 | 0.7426 | 本文模型 | 29.50 | 0.7857 | | 27.27 | 0.7462 | | 32.43 | 0.8068 | | 23.45 | 0.7292 | | 29.57 | 0.8060 | | 25.39 | 0.7860 |
|
|
|