面向密集预测任务的点云Transformer适配器
|
张德军,白燕子,曹锋,吴亦奇,徐战亚
|
Point cloud Transformer adapter for dense prediction task
|
Dejun ZHANG,Yanzi BAI,Feng CAO,Yiqi WU,Zhanya XU
|
|
表 2 S3DIS数据集(区域5)的语义分割结果 |
Tab.2 Semantic segmentation result of S3DIS dataset (area 5) |
|
方法 | mAcc/ % | mIoU/ % | mIoUcls/% | 天花板 | 地板 | 墙壁 | 横梁 | 柱子 | 窗户 | 门 | 桌子 | 椅子 | 沙发 | 书柜 | 黑板 | 杂物 | SPG[27] | 66.5 | 58.0 | 89.4 | 96.9 | 78.1 | 0.0 | 42.8 | 48.9 | 61.6 | 84.7 | 75.4 | 69.8 | 52.6 | 2.1 | 52.2 | PointWeb[2] | 66.6 | 60.3 | 92.0 | 98.5 | 79.4 | 0.0 | 21.1 | 59.7 | 34.8 | 76.3 | 88.3 | 46.9 | 69.3 | 64.9 | 52.5 | PAT[29] | 70.8 | 60.1 | 93.0 | 98.5 | 72.3 | 1.0 | 41.5 | 85.1 | 38.2 | 57.7 | 83.6 | 48.1 | 67.0 | 61.3 | 33.6 | PT[5] | 76.5 | 70.4 | 94.0 | 98.5 | 86.3 | 0.0 | 38.0 | 63.4 | 74.3 | 89.1 | 82.4 | 74.3 | 80.2 | 76.0 | 59.3 | PCT[6] | 67.7 | 61.3 | 92.5 | 98.4 | 80.6 | 0.0 | 19.3 | 61.6 | 48.0 | 76.6 | 85.2 | 46.2 | 67.7 | 67.9 | 52.3 | PatchF[13] | — | 67.3 | 91.8 | 98.7 | 86.2 | 0.0 | 34.1 | 48.9 | 62.4 | 81.6 | 89.8 | 47.2 | 74.9 | 74.4 | 58.6 | PointCAT[28] | 71.0 | 64.0 | 94.2 | 98.3 | 80.5 | 0.0 | 18.6 | 55.5 | 58.9 | 77.2 | 88.0 | 64.8 | 72.2 | 68.9 | 55.4 | SPFormer[14] | 77.3 | 68.9 | 91.5 | 98.2 | 81.4 | 0.0 | 23.3 | 65.3 | 40.0 | 75.5 | 87.7 | 59.5 | 67.8 | 65.6 | 49.4 | Point-Bert[10] | 75.7 | 63.5 | 91.3 | 92.3 | 73.1 | 0.0 | 33.9 | 65.6 | 60.4 | 76.5 | 82.7 | 86.8 | 64.0 | 41.7 | 43.0 | PCT-Adapter | 80.5 | 69.0 | 91.9 | 96.0 | 81.6 | 0.0 | 52.4 | 66.5 | 67.0 | 82.9 | 90.1 | 70.8 | 72.8 | 69.5 | 54.7 |
|
|
|