基于卷积辅助自注意力的胸部疾病分类网络
张自然,李锵,关欣

Classification network for chest disease based on convolution-assisted self-attention
Ziran ZHANG,Qiang LI,Xin GUAN
表 3 不同胸部疾病分类网络在MIMIC-CXR测试集上的结果比较
Tab.3 Comparison of result of different chest disease classification network on MIMIC-CXR test set
疾病类别AUC
MVCNetMMBTMedCLIPCAWSNet
肺不张0.8180.7580.841
心脏肿大0.8480.8260.824
实变0.8290.7710.833
水肿0.9190.8430.900
心纵膈扩大0.7250.7430.771
骨折0.6650.7290.660
肺部异常0.7400.7590.804
肺不透明0.7570.7150.748
无发现0.8420.8310.867
胸膜增厚0.9470.8860.922
胸膜其他疾病0.8250.8690.858
肺炎0.7150.7520.758
气胸0.8990.8800.861
平均值0.8100.7970.8040.819