基于卷积辅助自注意力的胸部疾病分类网络
张自然,李锵,关欣

Classification network for chest disease based on convolution-assisted self-attention
Ziran ZHANG,Qiang LI,Xin GUAN
表 1 不同胸部疾病分类网络在ChestX-Ray14测试集上的结果比较
Tab.1 Comparison of result of different chest disease classification network on ChestX-Ray14 test set
疾病类别AUC
MXTTransDDPCANPCSANetLCTCheXGATSSGEML-LGLCAWSNet
肺不张0.7980.7910.7850.8070.7890.7870.7920.7820.829
心脏肿大0.8960.8850.8970.9100.8890.8790.8920.9040.918
积液0.8420.8420.8370.8790.8420.8370.8400.8350.892
浸润0.7190.7150.7060.6980.6940.6990.7140.7070.726
肿块0.8560.8370.8340.8240.8430.8390.8480.8530.857
结节0.8090.8030.7860.7500.8030.7930.8120.7790.784
肺炎0.7580.7450.7300.7500.7420.7410.7330.7390.782
气胸0.8790.8850.8710.8500.8960.8790.8850.8890.903
肺实变0.7590.7530.7630.8020.7570.7550.7530.7710.820
水肿0.8490.8590.8490.8880.8580.8510.8480.8660.906
肺气肿0.9060.9440.9210.8900.9440.9450.9480.9490.935
纤维化0.8470.8490.8170.8120.8630.8420.8270.8460.827
胸腔积液0.8000.8030.7910.7680.7990.7940.7950.7870.817
疝气0.9130.9240.9430.9150.9150.9310.9320.9070.939
平均值0.8300.8310.8240.8250.8310.8270.8300.8300.853