基于CNN和Efficient Transformer的多尺度遥感图像语义分割算法
|
张振利,胡新凯,李凡,冯志成,陈智超
|
Semantic segmentation algorithm for multiscale remote sensing images based on CNN and Efficient Transformer
|
Zhenli ZHANG,Xinkai HU,Fan LI,Zhicheng FENG,Zhichao CHEN
|
|
表 2 不同模型在ISPRS Postdam数据集上的分割结果对比 |
Tab.2 Comparison of segmentation results of different models in ISPRS Postdam dataset |
|
模型 | IoU/% | OA/% | MIoU/% | 不透明表面 | 建筑物 | 低矮植被 | 树木 | 汽车 | FCN[23] | 76.31 | 83.23 | 64.65 | 66.03 | 68.78 | 86.04 | 71.80 | DANet[6] | 77.34 | 82.52 | 64.73 | 70.78 | 79.87 | 86.94 | 75.05 | HRNet[24] | 79.11 | 84.97 | 67.95 | 70.53 | 81.65 | 87.78 | 76.84 | DeepLabV3[25] | 78.90 | 85.23 | 68.68 | 70.91 | 83.17 | 87.73 | 77.38 | Segformer[27] | 79.96 | 86.70 | 69.72 | 65.21 | 77.64 | 87.09 | 75.85 | UNet[26] | 76.86 | 83.74 | 65.90 | 63.69 | 79.13 | 86.01 | 73.86 | TransUNet[28] | 79.79 | 86.13 | 68.94 | 66.30 | 78.63 | 86.41 | 75.96 | SwinUNet[29] | 73.01 | 76.29 | 61.74 | 54.27 | 68.88 | 80.49 | 66.83 | 本研究 | 86.05 | 92.60 | 74.93 | 73.68 | 84.17 | 90.50 | 82.29 |
|
|
|