基于CNN和Efficient Transformer的多尺度遥感图像语义分割算法
|
张振利,胡新凯,李凡,冯志成,陈智超
|
Semantic segmentation algorithm for multiscale remote sensing images based on CNN and Efficient Transformer
|
Zhenli ZHANG,Xinkai HU,Fan LI,Zhicheng FENG,Zhichao CHEN
|
|
表 1 不同模型在ISPRS Vaihingen数据集上的分割结果对比 |
Tab.1 Comparison of segmentation results of different models in ISPRS Vaihingen dataset |
|
模型 | IoU/% | OA/% | MIoU/% | 不透明表面 | 建筑物 | 低矮植被 | 树木 | 汽车 | FCN[23] | 78.81 | 85.45 | 65.56 | 74.76 | 24.25 | 86.49 | 65.56 | DANet[6] | 77.80 | 84.81 | 63.55 | 68.33 | 36.05 | 84.99 | 66.11 | HRNet[24] | 78.35 | 82.72 | 63.21 | 75.94 | 38.49 | 86.17 | 67.74 | DeepLabV3[25] | 79.28 | 86.34 | 66.05 | 77.22 | 30.49 | 86.34 | 67.88 | Segformer[27] | 78.88 | 83.18 | 61.04 | 75.39 | 45.22 | 85.94 | 68.74 | UNet[26] | 77.38 | 83.85 | 61.04 | 75.05 | 34.03 | 84.43 | 66.27 | TransUNet[28] | 76.68 | 81.05 | 63.46 | 74.08 | 46.53 | 84.80 | 68.36 | SwinUNet[29] | 74.16 | 77.85 | 62.01 | 73.46 | 35.62 | 83.50 | 64.62 | 本研究 | 79.98 | 84.88 | 65.27 | 74.44 | 57.69 | 86.51 | 72.45 |
|
|
|