预训练长短时空交错Transformer在交通流预测中的应用
马莉,王永顺,胡瑶,范磊

Pre-trained long-short spatiotemporal interleaved Transformer for traffic flow prediction applications
Li MA,Yongshun WANG,Yao HU,Lei FAN
表 2 不同交通流预测模型在4个交通流标准数据集上的性能对比
Tab.2 Performance comparison of different traffic flow prediction models in four traffic flow benchmark datasets
模型PEMS03数据集PEMS04数据集PEMS07数据集PEMS08数据集
MAERMSEMAPE/%MAERMSEMAPE/%MAERMSEMAPE/%MAERMSEMAPE/%
ARIMA [2]35.3147.5933.7833.7348.8024.1838.1759.2719.4631.0944.3222.73
Transformer[18]17.5030.2416.8023.8337.1915.5726.8042.9512.1118.5228.6813.66
DCRNN[8]18.1830.3118.9124.7038.1217.1225.3038.5811.6617.8627.8311.45
STGCN[11]17.4930.1217.1522.7035.5514.5925.3838.7811.0818.0227.8311.40
GWNet[12]19.8532.9419.3125.4539.7017.2926.8542.7812.1219.1331.0512.68
SVR[3]21.9735.2921.5128.7044.5619.2032.4950.2214.2623.2536.1614.64
LSTM[6]21.3335.1123.3327.1441.5918.2029.9845.8413.2022.2034.0614.20
AGCRN[10]16.0628.4915.8519.8332.2612.9721.2935.128.9715.9525.2210.09
ASTGNN[29]15.0726.8815.8019.2631.1612.6522.2335.959.2515.9825.679.97
DSTAGNN[28]15.5727.2114.6819.3031.4612.7021.4234.519.0115.6724.779.94
STSFGACN[17]14.9826.2414.0719.1431.6412.5620.6133.848.7315.1424.6110.63
ADMSTNODE[30]15.4726.7615.5919.2831.2512.6821.4034.449.0215.5825.099.92
PLSSIFormer14.6726.3614.9218.1129.5112.2220.2933.398.6214.3523.379.48