预训练长短时空交错Transformer在交通流预测中的应用
|
|
马莉,王永顺,胡瑶,范磊
|
Pre-trained long-short spatiotemporal interleaved Transformer for traffic flow prediction applications
|
|
Li MA,Yongshun WANG,Yao HU,Lei FAN
|
|
| 表 2 不同交通流预测模型在4个交通流标准数据集上的性能对比 |
| Tab.2 Performance comparison of different traffic flow prediction models in four traffic flow benchmark datasets |
|
| 模型 | PEMS03数据集 | | PEMS04数据集 | | PEMS07数据集 | | PEMS08数据集 | | MAE | RMSE | MAPE/% | | MAE | RMSE | MAPE/% | | MAE | RMSE | MAPE/% | | MAE | RMSE | MAPE/% | | ARIMA [2] | 35.31 | 47.59 | 33.78 | | 33.73 | 48.80 | 24.18 | | 38.17 | 59.27 | 19.46 | | 31.09 | 44.32 | 22.73 | | Transformer[18] | 17.50 | 30.24 | 16.80 | | 23.83 | 37.19 | 15.57 | | 26.80 | 42.95 | 12.11 | | 18.52 | 28.68 | 13.66 | | DCRNN[8] | 18.18 | 30.31 | 18.91 | | 24.70 | 38.12 | 17.12 | | 25.30 | 38.58 | 11.66 | | 17.86 | 27.83 | 11.45 | | STGCN[11] | 17.49 | 30.12 | 17.15 | | 22.70 | 35.55 | 14.59 | | 25.38 | 38.78 | 11.08 | | 18.02 | 27.83 | 11.40 | | GWNet[12] | 19.85 | 32.94 | 19.31 | | 25.45 | 39.70 | 17.29 | | 26.85 | 42.78 | 12.12 | | 19.13 | 31.05 | 12.68 | | SVR[3] | 21.97 | 35.29 | 21.51 | | 28.70 | 44.56 | 19.20 | | 32.49 | 50.22 | 14.26 | | 23.25 | 36.16 | 14.64 | | LSTM[6] | 21.33 | 35.11 | 23.33 | | 27.14 | 41.59 | 18.20 | | 29.98 | 45.84 | 13.20 | | 22.20 | 34.06 | 14.20 | | AGCRN[10] | 16.06 | 28.49 | 15.85 | | 19.83 | 32.26 | 12.97 | | 21.29 | 35.12 | 8.97 | | 15.95 | 25.22 | 10.09 | | ASTGNN[29] | 15.07 | 26.88 | 15.80 | | 19.26 | 31.16 | 12.65 | | 22.23 | 35.95 | 9.25 | | 15.98 | 25.67 | 9.97 | | DSTAGNN[28] | 15.57 | 27.21 | 14.68 | | 19.30 | 31.46 | 12.70 | | 21.42 | 34.51 | 9.01 | | 15.67 | 24.77 | 9.94 | | STSFGACN[17] | 14.98 | 26.24 | 14.07 | | 19.14 | 31.64 | 12.56 | | 20.61 | 33.84 | 8.73 | | 15.14 | 24.61 | 10.63 | | ADMSTNODE[30] | 15.47 | 26.76 | 15.59 | | 19.28 | 31.25 | 12.68 | | 21.40 | 34.44 | 9.02 | | 15.58 | 25.09 | 9.92 | | PLSSIFormer | 14.67 | 26.36 | 14.92 | | 18.11 | 29.51 | 12.22 | | 20.29 | 33.39 | 8.62 | | 14.35 | 23.37 | 9.48 |
|
|
|