基于半监督学习的多场景火灾小规模稀薄烟雾检测
|
杨凯博,钟铭恩,谭佳威,邓智颖,周梦丽,肖子佶
|
Small-scale sparse smoke detection in multiple fire scenarios based on semi-supervised learning
|
Kaibo YANG,Mingen ZHONG,Jiawei TAN,Zhiying DENG,Mengli ZHOU,Ziji XIAO
|
|
表 7 不同烟雾集下各个模型的性能对比 |
Tab.7 Performance comparison of each model with different smoke sets |
|
算法 | Easy | | Hard_1 | | Hard_2 | | MSIFSD | | D-Fire | FLOPs/109 | FPS | AP/% | R/% | AP/% | R/% | AP/% | R/% | AP/% | R/% | AP/% | R/% | Faster R-CNN[30] | 83.6 | 73.2 | | 73.6 | 65.7 | | 77.1 | 68.7 | | 79.1 | 69.3 | | 73.2 | 62.9 | 40.3 | 25.3 | SSD[31] | 75.4 | 62.8 | | 67.3 | 57.7 | | 68.2 | 58.4 | | 71.3 | 59.4 | | 68.5 | 64.3 | 27.6 | 51.1 | YOLOv5n[32] | 89.5 | 81.3 | | 78.2 | 72.0 | | 82.1 | 75.5 | | 84.9 | 77.2 | | 80.3 | 74.2 | 1.7 | 57.8 | YOLOv8n | 95.0 | 88.4 | | 82.3 | 77.3 | | 83.4 | 78.3 | | 89.9 | 83.7 | | 86.2 | 81.4 | 8.2 | 103.0 | DETR[33] | 75.6 | 85.4 | | 69.9 | 77.6 | | 71.3 | 79.2 | | 72.2 | 81.6 | | 69.3 | 76.6 | 8.7 | 52.1 | DeepSmoke | 96.3 | 89.6 | | 86.4 | 81.0 | | 87.8 | 82.3 | | 92.0 | 85.6 | | 88.3 | 84.1 | 9.3 | 85.3 | DeepSmoke_SST | 98.3 | 91.4 | | 88.2 | 82.7 | | 90.0 | 84.3 | | 94.2 | 87.6 | | 92.6 | 88.3 | 9.3 | 85.3 |
|
|
|