基于改进YOLOv7-tiny的铝型材表面缺陷检测方法
王浚银,文斌,沈艳军,张俊,王子豪

Surface defect detection method for aluminum profiles based on improved YOLOv7-tiny
Junyin WANG,Bin WEN,Yanjun SHEN,Jun ZHANG,Zihao WANG
表 6 不同算法指标对比实验结果
Tab.6 Comparative experimental results on different algorithm indicators
模型AP/%mAP@0.5/%R/%Q/106FLOPs/109V/MBFPS/(帧·s−1
不导电脏点漏底凹陷
Faster-RCNN97.472.895.881.886.962.341.30214.0315.016
YOLOv3-tiny52.869.071.881.268.788.48.6713.017.440
YOLOv5-s99.379.999.491.292.588.87.0016.014.445
改进的YOLOv5-s[28]98.872.899.589.090.088.67.2018.615.338
YOLOv7-tiny99.569.699.892.290.388.56.0213.212.350
YOLOv8-s99.478.699.593.592.889.411.1028.722.540
本研究模型99.282.799.796.294.591.86.158.612.745