基于改进YOLOv7-tiny的铝型材表面缺陷检测方法
|
王浚银,文斌,沈艳军,张俊,王子豪
|
Surface defect detection method for aluminum profiles based on improved YOLOv7-tiny
|
Junyin WANG,Bin WEN,Yanjun SHEN,Jun ZHANG,Zihao WANG
|
|
表 6 不同算法指标对比实验结果 |
Tab.6 Comparative experimental results on different algorithm indicators |
|
模型 | AP/% | mAP@0.5/% | R/% | Q/106 | FLOPs/109 | V/MB | FPS/(帧·s−1) | 不导电 | 脏点 | 漏底 | 凹陷 | Faster-RCNN | 97.4 | 72.8 | 95.8 | 81.8 | 86.9 | 62.3 | 41.30 | 214.0 | 315.0 | 16 | YOLOv3-tiny | 52.8 | 69.0 | 71.8 | 81.2 | 68.7 | 88.4 | 8.67 | 13.0 | 17.4 | 40 | YOLOv5-s | 99.3 | 79.9 | 99.4 | 91.2 | 92.5 | 88.8 | 7.00 | 16.0 | 14.4 | 45 | 改进的YOLOv5-s[28] | 98.8 | 72.8 | 99.5 | 89.0 | 90.0 | 88.6 | 7.20 | 18.6 | 15.3 | 38 | YOLOv7-tiny | 99.5 | 69.6 | 99.8 | 92.2 | 90.3 | 88.5 | 6.02 | 13.2 | 12.3 | 50 | YOLOv8-s | 99.4 | 78.6 | 99.5 | 93.5 | 92.8 | 89.4 | 11.10 | 28.7 | 22.5 | 40 | 本研究模型 | 99.2 | 82.7 | 99.7 | 96.2 | 94.5 | 91.8 | 6.15 | 8.6 | 12.7 | 45 |
|
|
|