基于改进YOLOv8s的钢材表面缺陷检测算法
梁礼明,龙鹏威,金家新,李仁杰,曾璐

Steel surface defect detection algorithm based on improved YOLOv8s
Liming LIANG,Pengwei LONG,Jiaxin JIN,Renjie LI,Lu ZENG
表 7 不同算法在NEU-DET和Severstal数据集上的对比实验结果
Tab.7 Comparative experimental results of different algorithms on NEU-DET and Severstal datasets
数据集模型方法mAP/%Params/106FLOPs/109FPS/帧
NEU-DETFaster R-CNN65.772.0167.317
SSD61.041.1145.341
YOLOv367.061.5155.031
YOLOv3-tiny46.58.612.9142
YOLOv451.052.5119.845
YOLOv4-tiny54.65.916.1128
YOLOv5s70.17.0716.4102
YOLOX-s71.88.021.646
YOLOv770.037.2104.836
YOLOv7-tiny68.76.0213.1108
YOLOv8s72.811.128.8120
文献[11]78.55.810.949
文献[18]74.123.975
SDB-YOLOv8s(本研究)79.27.216.2146
SeverstalSSD65.341.1145.312
YOLOv3-tiny56.48.612.9117
YOLOv4-tiny59.65.916.1103
YOLOv7-tiny68.76.0213.1108
YOLOv5s72.47.0716.459
YOLOv5m73.221.050.352.6
YOLOX-s73.88.021.642
YOLOv8s69.811.128.8103
SDB-YOLOv8s(本研究)76.97.216.2121