基于改进YOLOv8s的钢材表面缺陷检测算法
|
梁礼明,龙鹏威,金家新,李仁杰,曾璐
|
Steel surface defect detection algorithm based on improved YOLOv8s
|
Liming LIANG,Pengwei LONG,Jiaxin JIN,Renjie LI,Lu ZENG
|
|
表 7 不同算法在NEU-DET和Severstal数据集上的对比实验结果 |
Tab.7 Comparative experimental results of different algorithms on NEU-DET and Severstal datasets |
|
数据集 | 模型方法 | mAP/% | Params/106 | FLOPs/109 | FPS/帧 | NEU-DET | Faster R-CNN | 65.7 | 72.0 | 167.3 | 17 | SSD | 61.0 | 41.1 | 145.3 | 41 | YOLOv3 | 67.0 | 61.5 | 155.0 | 31 | YOLOv3-tiny | 46.5 | 8.6 | 12.9 | 142 | YOLOv4 | 51.0 | 52.5 | 119.8 | 45 | YOLOv4-tiny | 54.6 | 5.9 | 16.1 | 128 | YOLOv5s | 70.1 | 7.07 | 16.4 | 102 | YOLOX-s | 71.8 | 8.0 | 21.6 | 46 | YOLOv7 | 70.0 | 37.2 | 104.8 | 36 | YOLOv7-tiny | 68.7 | 6.02 | 13.1 | 108 | YOLOv8s | 72.8 | 11.1 | 28.8 | 120 | 文献[11] | 78.5 | 5.8 | 10.9 | 49 | 文献[18] | 74.1 | 23.9 | — | 75 | SDB-YOLOv8s(本研究) | 79.2 | 7.2 | 16.2 | 146 | Severstal | SSD | 65.3 | 41.1 | 145.3 | 12 | YOLOv3-tiny | 56.4 | 8.6 | 12.9 | 117 | YOLOv4-tiny | 59.6 | 5.9 | 16.1 | 103 | YOLOv7-tiny | 68.7 | 6.02 | 13.1 | 108 | YOLOv5s | 72.4 | 7.07 | 16.4 | 59 | YOLOv5m | 73.2 | 21.0 | 50.3 | 52.6 | YOLOX-s | 73.8 | 8.0 | 21.6 | 42 | YOLOv8s | 69.8 | 11.1 | 28.8 | 103 | SDB-YOLOv8s(本研究) | 76.9 | 7.2 | 16.2 | 121 |
|
|
|