基于改进YOLOv8s的钢材表面缺陷检测算法
梁礼明,龙鹏威,金家新,李仁杰,曾璐

Steel surface defect detection algorithm based on improved YOLOv8s
Liming LIANG,Pengwei LONG,Jiaxin JIN,Renjie LI,Lu ZENG
表 5 NEU-DET和Severstal数据集消融实验结果
Tab.5 Ablation test results on NEU-DET and Severstal datasets
数据集模型方法mAP/%Params/106FLOPs/109FPS/帧P/%R/%
NEU-DETYOLOv8s72.811.128.810972.870.9
YOLOv8s+M177.210.326.912977.170.4
YOLOv8s+M275.812.328.710476.770.2
YOLOv8s+M374.06.416.521771.576.0
YOLOv8s+M1+M2+M379.27.216.214677.472.1
SeverstalYOLOv8s69.911.128.810371.168.4
YOLOv8s+M174.210.326.911270.069.7
YOLOv8s+M271.112.328.78868.870.9
YOLOv8s+M372.16.416.519665.170.3
YOLOv8s+M1+M2+M376.97.216.212177.670.4