基于改进YOLOv8s的钢材表面缺陷检测算法
|
梁礼明,龙鹏威,金家新,李仁杰,曾璐
|
Steel surface defect detection algorithm based on improved YOLOv8s
|
Liming LIANG,Pengwei LONG,Jiaxin JIN,Renjie LI,Lu ZENG
|
|
表 5 NEU-DET和Severstal数据集消融实验结果 |
Tab.5 Ablation test results on NEU-DET and Severstal datasets |
|
数据集 | 模型方法 | mAP/% | Params/106 | FLOPs/109 | FPS/帧 | P/% | R/% | NEU-DET | YOLOv8s | 72.8 | 11.1 | 28.8 | 109 | 72.8 | 70.9 | YOLOv8s+M1 | 77.2 | 10.3 | 26.9 | 129 | 77.1 | 70.4 | YOLOv8s+M2 | 75.8 | 12.3 | 28.7 | 104 | 76.7 | 70.2 | YOLOv8s+M3 | 74.0 | 6.4 | 16.5 | 217 | 71.5 | 76.0 | YOLOv8s+M1+M2+M3 | 79.2 | 7.2 | 16.2 | 146 | 77.4 | 72.1 | Severstal | YOLOv8s | 69.9 | 11.1 | 28.8 | 103 | 71.1 | 68.4 | YOLOv8s+M1 | 74.2 | 10.3 | 26.9 | 112 | 70.0 | 69.7 | YOLOv8s+M2 | 71.1 | 12.3 | 28.7 | 88 | 68.8 | 70.9 | YOLOv8s+M3 | 72.1 | 6.4 | 16.5 | 196 | 65.1 | 70.3 | YOLOv8s+M1+M2+M3 | 76.9 | 7.2 | 16.2 | 121 | 77.6 | 70.4 |
|
|
|