基于内容引导注意力的车道线检测网络
|
刘登峰,郭文静,陈世海
|
Content-guided attention-based lane detection network
|
Dengfeng LIU,Wenjing GUO,Shihai CHEN
|
|
表 3 CGANet在Tusimple上的实验结果 |
Tab.3 CGANet’s experimental results on TuSimple dataset |
|
方法 | 基线网络 | F1/% | Acc/% | PFP/% | PFN/% | SCNN[8] | VGG16 | 94.97 | 93.12 | 7.17 | 2.20 | UFLD[2] | ResNet18 | 85.87 | 93.82 | 20.05 | 8.92 | ResNet34 | 86.02 | 92.86 | 19.91 | 8.75 | LaneATT[15] | ResNet18 | 95.71 | 92.10 | 4.56 | 8.01 | ResNet34 | 95.77 | 92.63 | 4.53 | 7.92 | ResNet122 | 95.59 | 92.57 | 6.64 | 7.17 | CondLaneNet[13] | ResNet18 | 96.01 | 93.48 | 3.18 | 7.28 | ResNet34 | 95.98 | 93.37 | 3.20 | 8.80 | ResNet101 | 96.24 | 94.54 | 3.01 | 8.82 | CLRNet[7] | ResNet18 | 95.04 | 93.97 | 3.09 | 7.02 | ResNet34 | 94.73 | 93.11 | 2.87 | 7.92 | ResNet101 | 97.27 | 96.33 | 1.86 | 3.63 | CGANet (本研究方法) | ResNet18 | 96.73 | 95.24 | 1.84 | 4.80 | ResNet34 | 96.02 | 93.78 | 1.97 | 6.14 | ResNet101 | 97.45 | 96.67 | 2.76 | 2.31 |
|
|
|