基于内容引导注意力的车道线检测网络
刘登峰,郭文静,陈世海

Content-guided attention-based lane detection network
Dengfeng LIU,Wenjing GUO,Shihai CHEN
表 2 CGANet在CULane上的实验结果
Tab.2 CGANet’s experimental results on CULane dataset
方法基线网络F1/%mF1/%F1/%NcrossFPS/帧Flops/109
NormalCrowdDazzleShadowNo lineArrowCurveNingt
SCNN[8]VGG1671.6038.3490.6069.7058.5066.9043.4084.1064.4066.1019907.5328.4
UFLD[2]ResNet1868.4038.9485.9063.6057.0069.6040.6079.4065.2066.702037282.08.4
ResNet3472.3038.9687.7066.0058.4068.8040.2081.0057.9062.101473170.016.9
LaneATT[15]ResNet1874.5047.3590.7169.7161.8264.0347.1386.8264.7566.581020153.09.3
ResNet3474.0047.5791.1472.0362.4774.1547.3987.3864.7568.721330130.018.0
ResNet12274.4048.4890.7469.7465.4772.3148.4685.2968.7268.81126421.070.5
CondLaneNet[14]ResNet1875.1348.8491.8774.8766.7276.0150.3988.3772.4071.231364175.010.2
ResNet3476.6849.1192.3874.1467.1775.9349.8588.8972.8871.921387128.019.6
ResNet10177.0250.8392.4774.1466.9376.9152.1389.1672.2172.80120149.044.8
CLRerNet[3]ResNet1876.1252.1192.6075.9270.2377.3352.3488.5772.6873.251458119.013.2
ResNet3477.2752.4592.5375.9670.4578.9252.9889.2372.8173.561334104.024.5
ResNet10178.8052.6892.8076.1269.8478.9553.6589.6973.4573.37128950.041.2
CLRNet[7]ResNet1878.1451.9292.6975.0669.7075.3951.9689.2568.0973.221520119.012.9
ResNet3478.7451.1492.4975.3370.5775.9252.0189.5972.7773.021448103.022.6
ResNet10179.4851.5592.8575.7868.4978.3352.5088.7972.5773.51145646.040.5
CGANet
(本研究方法)
ResNet1879.5852.6292.8976.0369.5376.6049.7388.5772.3773.131321120.013.7
ResNet3479.7352.3192.8775.8670.5776.8850.0389.7973.2373.741216112.030.6
ResNet10180.1352.8892.5476.7868.4979.5150.5887.6273.6873.36126257.042.7