基于内容引导注意力的车道线检测网络
|
刘登峰,郭文静,陈世海
|
Content-guided attention-based lane detection network
|
Dengfeng LIU,Wenjing GUO,Shihai CHEN
|
|
表 2 CGANet在CULane上的实验结果 |
Tab.2 CGANet’s experimental results on CULane dataset |
|
方法 | 基线网络 | F1/% | mF1/% | F1/% | Ncross | FPS/帧 | Flops/109 | Normal | Crowd | Dazzle | Shadow | No line | Arrow | Curve | Ningt | SCNN[8] | VGG16 | 71.60 | 38.34 | 90.60 | 69.70 | 58.50 | 66.90 | 43.40 | 84.10 | 64.40 | 66.10 | 1990 | 7.5 | 328.4 | UFLD[2] | ResNet18 | 68.40 | 38.94 | 85.90 | 63.60 | 57.00 | 69.60 | 40.60 | 79.40 | 65.20 | 66.70 | 2037 | 282.0 | 8.4 | ResNet34 | 72.30 | 38.96 | 87.70 | 66.00 | 58.40 | 68.80 | 40.20 | 81.00 | 57.90 | 62.10 | 1473 | 170.0 | 16.9 | LaneATT[15] | ResNet18 | 74.50 | 47.35 | 90.71 | 69.71 | 61.82 | 64.03 | 47.13 | 86.82 | 64.75 | 66.58 | 1020 | 153.0 | 9.3 | ResNet34 | 74.00 | 47.57 | 91.14 | 72.03 | 62.47 | 74.15 | 47.39 | 87.38 | 64.75 | 68.72 | 1330 | 130.0 | 18.0 | ResNet122 | 74.40 | 48.48 | 90.74 | 69.74 | 65.47 | 72.31 | 48.46 | 85.29 | 68.72 | 68.81 | 1264 | 21.0 | 70.5 | CondLaneNet[14] | ResNet18 | 75.13 | 48.84 | 91.87 | 74.87 | 66.72 | 76.01 | 50.39 | 88.37 | 72.40 | 71.23 | 1364 | 175.0 | 10.2 | ResNet34 | 76.68 | 49.11 | 92.38 | 74.14 | 67.17 | 75.93 | 49.85 | 88.89 | 72.88 | 71.92 | 1387 | 128.0 | 19.6 | ResNet101 | 77.02 | 50.83 | 92.47 | 74.14 | 66.93 | 76.91 | 52.13 | 89.16 | 72.21 | 72.80 | 1201 | 49.0 | 44.8 | CLRerNet[3] | ResNet18 | 76.12 | 52.11 | 92.60 | 75.92 | 70.23 | 77.33 | 52.34 | 88.57 | 72.68 | 73.25 | 1458 | 119.0 | 13.2 | ResNet34 | 77.27 | 52.45 | 92.53 | 75.96 | 70.45 | 78.92 | 52.98 | 89.23 | 72.81 | 73.56 | 1334 | 104.0 | 24.5 | ResNet101 | 78.80 | 52.68 | 92.80 | 76.12 | 69.84 | 78.95 | 53.65 | 89.69 | 73.45 | 73.37 | 1289 | 50.0 | 41.2 | CLRNet[7] | ResNet18 | 78.14 | 51.92 | 92.69 | 75.06 | 69.70 | 75.39 | 51.96 | 89.25 | 68.09 | 73.22 | 1520 | 119.0 | 12.9 | ResNet34 | 78.74 | 51.14 | 92.49 | 75.33 | 70.57 | 75.92 | 52.01 | 89.59 | 72.77 | 73.02 | 1448 | 103.0 | 22.6 | ResNet101 | 79.48 | 51.55 | 92.85 | 75.78 | 68.49 | 78.33 | 52.50 | 88.79 | 72.57 | 73.51 | 1456 | 46.0 | 40.5 | CGANet (本研究方法) | ResNet18 | 79.58 | 52.62 | 92.89 | 76.03 | 69.53 | 76.60 | 49.73 | 88.57 | 72.37 | 73.13 | 1321 | 120.0 | 13.7 | ResNet34 | 79.73 | 52.31 | 92.87 | 75.86 | 70.57 | 76.88 | 50.03 | 89.79 | 73.23 | 73.74 | 1216 | 112.0 | 30.6 | ResNet101 | 80.13 | 52.88 | 92.54 | 76.78 | 68.49 | 79.51 | 50.58 | 87.62 | 73.68 | 73.36 | 1262 | 57.0 | 42.7 |
|
|
|