1 | IEEE CEC’2019 Competition on Evolutionary Computation | 来自真实世界应用的7个基准多目标优化问题,其中评估成本很高 | https://github.com/HandingWang/DDMOP |
2 | IEEE CEC’2020 Competition at IEEE world congress on computational intelligence | 来自气动优化和软件配置调整的2个现实应用程序的8个基准问题 | https://github.com/HandingWang/DDEOWCCI2020 |
3 | IEEE CEC’2021 Competition at IEEE congress on evolutionary computation | 不同场景下机器人群体模型参数优化的6个问题 | https://handingwang.github.io/DDEOCEC2021/ |
4 | IEEE CEC’2022 Competition on Heat Pipe-Constrained Component Layout Optimization | 设置了5个优化尺度不同的热管约束元件布局优化(HCLO)问题 | https://idrl-lab.github.io/CEC2022-HCLO/ |
5 | IEEE CEC’2023 Competition on Competition on Multiobjective Neural Architecture Search | 提供了端到端的流水线平台,称为EvoXBtch,用于生成NAS基准测试套件,涵盖了7种搜索空间、2种神经网络架构、2种广泛研究的数据集、6种硬件以及多达6种类型的优化目标 | https://www.emigroup.tech/index.php/news/ieee-cec2023-competition-on-multiobjective-neural-architecture-search/ |
6 | IEEE CEC’2023 Competition on Large-scale Continuous Optimization for Non-contact Measurement | 分别从多导体系统的非接触电压测量(NVM)和非接触电流测量(NIM)2个任务中精心选择了6个大规模优化问题 | https://github.com/ChengHust/IEEE-CEC-2023-Competition |
7 | IEEE CEC’2024 Competition on "Super Large-scale Multiobjective Optimization for Status Assessment of Measuring Equipment" | 来自广域电力系统中仪表变压器的3个在线状态评估(即,ETT问题),这3个大规模多目标优化问题的决策变量分别为 100万、1000万和1亿 | https://github.com/ChengHust/IEEE-CEC-2024-Competition |