基于课程学习的跨度级方面情感三元组提取
|
侯明泽,饶蕾,范光宇,陈年生,程松林
|
Span-level aspect sentiment triplet extraction based on curriculum learning
|
Mingze HOU,Lei RAO,Guangyu FAN,Niansheng CHEN,Songlin CHENG
|
|
表 6 不同模型的方面情感三元组提取任务结果对比 |
Tab.6 Comparison of aspect sentiment triplet extraction task results from different models |
|
% | 模型 | 类型 | 14LAP | | 14RES | | 15RES | | 16RES | P | R | F1 | | P | R | F1 | | P | R | F1 | | P | R | F1 | GAS[15] | T5 | — | — | 60.78 | | — | — | 72.16 | | — | — | 62.10 | | — | — | 70.10 | BARTABSA[14] | BART | 61.41 | 56.19 | 58.69 | | 65.52 | 64.99 | 65.25 | | 59.14 | 59.38 | 59.26 | | 66.60 | 68.68 | 67.62 | JET[15] | BERT | 55.39 | 47.33 | 51.04 | | 70.56 | 55.94 | 62.40 | | 64.45 | 51.96 | 57.53 | | 70.42 | 58.37 | 63.83 | B-MRC[18] | BERT | 65.12 | 54.41 | 59.27 | | 71.32 | 70.09 | 70.69 | | 63.71 | 58.63 | 61.05 | | 67.74 | 68.56 | 68.13 | Dual-MRC[19] | BERT | 57.39 | 53.88 | 55.58 | | 71.55 | 69.14 | 70.32 | | 63.78 | 51.87 | 57.21 | | 68.60 | 66.24 | 67.40 | GTS[29] | BERT | 57.52 | 51.92 | 54.58 | | 70.92 | 69.49 | 70.20 | | 59.29 | 58.07 | 58.67 | | 68.58 | 66.60 | 67.58 | Span-ASTE[18] | BERT | 63.44 | 55.84 | 59.38 | | 72.89 | 70.89 | 71.85 | | 62.18 | 64.45 | 63.27 | | 69.45 | 71.17 | 70.26 | 本研究 | BERT | 62.83 | 56.43 | 59.56 | | 72.68 | 71.26 | 71.96 | | 62.97 | 63.61 | 63.29 | | 69.75 | 71.04 | 70.39 | 本研究(CL) | BERT | 64.32 | 57.34 | 60.63 | | 73.10 | 71.34 | 72.21 | | 63.57 | 64.53 | 64.05 | | 69.98 | 71.53 | 70.75 | 本研究 | RoBERTa | 65.87 | 56.17 | 60.64 | | 74.49 | 72.31 | 73.38 | | 63.12 | 64.37 | 63.74 | | 70.81 | 72.36 | 71.58 | 本研究(CL) | RoBERTa | 67.49 | 58.63 | 62.75 | | 75.36 | 72.52 | 73.91 | | 64.17 | 64.76 | 64.46 | | 71.88 | 72.74 | 72.31 |
|
|
|