基于深度学习的列车运行环境感知关键算法研究综述
|
陈智超,杨杰,李凡,冯志成
|
Review on deep learning-based key algorithm for train running environment perception
|
Zhichao CHEN,Jie YANG,Fan LI,Zhicheng FENG
|
|
表 5 不同检测距离下BEVFusion的平均精度均值 |
Tab.5 Mean average precision of BEVFusion at different detection distances |
|
模型 | 模态 | mAP/% | D < 50 m | D∈[50,100) m | D∈[100,150) m | D∈[150,200] m | D > 200 m | BEVFusion | 相机 | 20.20 | 47.99 | 22.35 | 0.00 | 0.00 | +TF | 相机 | 24.03 | 47.58 | 21.27 | 0.05 | 4.86 | BEVFusion | 激光雷达 | 73.91 | 74.27 | 71.07 | 49.75 | 78.40 | +TF | 激光雷达 | 88.29 | 75.09 | 66.80 | 51.04 | 79.73 | +TF+TA-GTP | 激光雷达 | 88.08 | 74.96 | 71.46 | 52.08 | 78.96 | BEVFusion | 相机+激光雷达 | 81.37 | 74.22 | 67.71 | 50.56 | 76.32 | +TF | 相机+激光雷达 | 86.68 | 74.70 | 70.20 | 54.65 | 80.86 |
|
|
|