基于深度学习的列车运行环境感知关键算法研究综述
陈智超,杨杰,李凡,冯志成

Review on deep learning-based key algorithm for train running environment perception
Zhichao CHEN,Jie YANG,Fan LI,Zhicheng FENG
表 5 不同检测距离下BEVFusion的平均精度均值
Tab.5 Mean average precision of BEVFusion at different detection distances
模型模态mAP/%
D < 50 mD∈[50,100) mD∈[100,150) mD∈[150,200] mD > 200 m
BEVFusion相机20.2047.9922.350.000.00
+TF相机24.0347.5821.270.054.86
BEVFusion激光雷达73.9174.2771.0749.7578.40
+TF激光雷达88.2975.0966.8051.0479.73
+TF+TA-GTP激光雷达88.0874.9671.4652.0878.96
BEVFusion相机+激光雷达81.3774.2267.7150.5676.32
+TF相机+激光雷达86.6874.7070.2054.6580.86