基于双重注意力时空图卷积网络的行人轨迹预测
向晓倩,陈璟

Pedestrian trajectory prediction based on dual-attention spatial-temporal graph convolutional network
Xiaoqian XIANG,Jing CHEN
表 4 本研究模型在不同组件下的消融实验结果(ADE/FDE)
Tab.4 Ablation experiment results (ADE/FDE) of propsed model in different components
组件变体ADE/FDESDD
ETHHOTELUNIVZARA1ZARA2平均值
Attentionw/o0.43/0.700.21/0.360.28/0.460.24/0.420.20/0.350.27/0.459.28/15.35
SAtt0.40/0.680.19/0.350.23/0.400.19/0.350.14/0.270.23/0.419.20/15.28
TAtt0.37/0.630.19/0.330.22/0.390.19/0.340.14/0.270.24/0.399.18/15.25
TAtt+SAtt0.37/0.600.17/0.300.23/0.390.19/0.330.14/0.260.22/0.389.16/15.21
WeightAw/o0.41/0.670.21/0.370.25/0.430.24/0.380.18/0.290.26/0.429.23/15.30
${{A}_{{L_2}}}$0.39/0.650.19/0.360.25/0.410.21/0.360.15/0.270.24/0.419.18/15.25
${\underline { A_t }} $0.37/0.600.17/0.300.23/0.390.19/0.330.14/0.260.22/0.389.16/15.21
Samplingrandom0.62/1.100.42/0.640.47/0.850.34/0.500.30/0.490.43/0.719.30/15.58
$\underline{{\rm{purpose}}}$0.37/0.600.17/0.300.23/0.390.19/0.330.14/0.260.22/0.389.16/15.21
Multi-headw/o0.41/0.670.17/0.300.23/0.390.19/0.340.14/0.250.23/0.399.20/15.25
20.36/0.600.18/0.330.23/0.390.19/0.350.14/0.260.22/0.399.18/15.24
$\underline 4$0.37/0.600.17/0.300.23/0.390.19/0.330.14/0.260.22/0.389.16/15.21
60.44/0.760.17/0.300.23/0.410.19/0.350.15/0.280.24/0.429.19/15.23
80.39/0.630.16/0.280.23/0.400.19/0.350.15/0.270.22/0.399.17/15.23
Loss${{L}_1}$0.40/0.670.19/0.370.28/0.400.21/0.370.20/0.300.25/0.429.18/15.27
${{L}_2}$0.39/0.650.20/0.360.24/0.430.23/0.350.17/0.270.24/0.419.17/15.25
$ \underline{ {{L}}_1 + {{L}}_2 } $0.37/0.600.17/0.300.23/0.390.19/0.330.14/0.260.22/0.389.16/15.21