基于双重注意力时空图卷积网络的行人轨迹预测
|
向晓倩,陈璟
|
Pedestrian trajectory prediction based on dual-attention spatial-temporal graph convolutional network
|
Xiaoqian XIANG,Jing CHEN
|
|
表 1 ETH和UCY数据集上的结果(ADE/FDE)对比表 |
Tab.1 Comparison of results (ADE/FDE) on ETH and UCY datasets |
|
模型 | 年份 | ADE/FDE | ETH | HOTEL | UNIV | ZARA1 | ZARA2 | 平均值 | PITF[16] | 2019 | 0.73/1.65 | 0.30/0.59 | 0.60/1.27 | 0.38/0.81 | 0.31/0.68 | 0.46/1.00 | STGAT[17] | 2019 | 0.50/0.84 | 0.26/0.46 | 0.51/1.07 | 0.33/0.64 | 0.30/0.61 | 0.38/0.72 | BIGAT[14] | 2019 | 0.69/1.29 | 0.49/1.01 | 0.55/1.32 | 0.30/0.62 | 0.36/0.75 | 0.48/1.00 | Social-STGCNN[7] | 2020 | 0.64/1.11 | 0.49/0.85 | 0.44/0.79 | 0.34/0.53 | 0.30/0.48 | 0.44/0.75 | PECNET[15] | 2020 | 0.54/0.87 | 0.18/0.24 | 0.35/0.60 | 0.22/0.39 | 0.17/0.30 | 0.29/0.48 | STAR[18] | 2020 | 0.36/0.65 | 0.17/0.36 | 0.31/0.62 | 0.26/0.55 | 0.22/0.46 | 0.26/0.53 | SGCN[8] | 2021 | 0.63/1.03 | 0.32/0.55 | 0.37/0.70 | 0.29/0.53 | 0.25/0.45 | 0.37/0.65 | AGENTFORMER[19] | 2021 | 0.45/0.75 | 0.14/0.22 | 0.25/0.45 | 0.18/0.30 | 0.14/0.24 | 0.23/0.39 | SIT[20] | 2022 | 0.42/0.60 | 0.21/0.37 | 0.51/0.94 | 0.20/0.34 | 0.17/0.30 | 0.30/0.51 | Social-STGCNN+NPSN[11] | 2022 | 0.44/0.65 | 0.21/0.34 | 0.27/0.44 | 0.24/0.43 | 0.21/0.37 | 0.28/0.44 | SGCN+NPSN[11] | 2022 | 0.35/0.58 | 0.15/0.25 | 0.22/0.39 | 0.18/0.31 | 0.13/0.24 | 0.21/0.36 | Graph-TERN[21] | 2023 | 0.42/0.58 | 0.14/0.23 | 0.26/0.45 | 0.21/0.37 | 0.17/0.29 | 0.24/0.38 | 本研究模型 | — | 0.37/0.60 | 0.17/0.30 | 0.23/0.39 | 0.19/0.33 | 0.14/0.26 | 0.22/0.38 |
|
|
|