基于双重注意力时空图卷积网络的行人轨迹预测
向晓倩,陈璟

Pedestrian trajectory prediction based on dual-attention spatial-temporal graph convolutional network
Xiaoqian XIANG,Jing CHEN
表 1 ETH和UCY数据集上的结果(ADE/FDE)对比表
Tab.1 Comparison of results (ADE/FDE) on ETH and UCY datasets
模型年份ADE/FDE
ETHHOTELUNIVZARA1ZARA2平均值
PITF[16]20190.73/1.650.30/0.590.60/1.270.38/0.810.31/0.680.46/1.00
STGAT[17]20190.50/0.840.26/0.460.51/1.070.33/0.640.30/0.610.38/0.72
BIGAT[14]20190.69/1.290.49/1.010.55/1.320.30/0.620.36/0.750.48/1.00
Social-STGCNN[7]20200.64/1.110.49/0.850.44/0.790.34/0.530.30/0.480.44/0.75
PECNET[15]20200.54/0.870.18/0.240.35/0.600.22/0.390.17/0.300.29/0.48
STAR[18]20200.36/0.650.17/0.360.31/0.620.26/0.550.22/0.460.26/0.53
SGCN[8]20210.63/1.030.32/0.550.37/0.700.29/0.530.25/0.450.37/0.65
AGENTFORMER[19]20210.45/0.750.14/0.220.25/0.450.18/0.300.14/0.240.23/0.39
SIT[20]20220.42/0.600.21/0.370.51/0.940.20/0.340.17/0.300.30/0.51
Social-STGCNN+NPSN[11]20220.44/0.650.21/0.340.27/0.440.24/0.430.21/0.370.28/0.44
SGCN+NPSN[11]20220.35/0.580.15/0.250.22/0.390.18/0.310.13/0.240.21/0.36
Graph-TERN[21]20230.42/0.580.14/0.230.26/0.450.21/0.370.17/0.290.24/0.38
本研究模型0.37/0.600.17/0.300.23/0.390.19/0.330.14/0.260.22/0.38