用于多元时间序列预测的图神经网络模型
|
张晗
|
Graph neural network model for multivariate time series forecasting
|
Han ZHANG
|
|
表 3 单步预测任务中所有模型的实验结果 |
Tab.3 Experimental results of models for single-step forecasting |
|
模型 | l | RSE | | CORR | Exchange-Rate | Traffic | Electricity | Solar-Energy | Exchange-Rate | Traffic | Electricity | Solar-Energy | AR | 3 | 0.023 | 0.606 | 0.091 | 0.244 | | 0.976 | 0.785 | 0.887 | 0.971 | 6 | 0.028 | 0.628 | 0.101 | 0.379 | 0.965 | 0.763 | 0.864 | 0.926 | 12 | 0.035 | 0.628 | 0.112 | 0.591 | 0.954 | 0.763 | 0.853 | 0.811 | 24 | 0.045 | 0.639 | 0.123 | 0.870 | 0.942 | 0.752 | 0.875 | 0.531 | VAR-MLP | 3 | 0.027 | 0.561 | 0.145 | 0.192 | | 0.853 | 0.821 | 0.875 | 0.983 | 6 | 0.039 | 0.663 | 0.167 | 0.268 | 0.875 | 0.775 | 0.842 | 0.966 | 12 | 0.040 | 0.606 | 0.156 | 0.424 | 0.831 | 0.797 | 0.821 | 0.906 | 24 | 0.057 | 0.628 | 0.134 | 0.684 | 0.777 | 0.785 | 0.862 | 0.715 | GP | 3 | 0.024 | 0.607 | 0.156 | 0.226 | | 0.875 | 0.785 | 0.876 | 0.975 | 6 | 0.027 | 0.685 | 0.189 | 0.329 | 0.821 | 0.741 | 0.831 | 0.945 | 12 | 0.039 | 0.641 | 0.167 | 0.520 | 0.853 | 0.774 | 0.842 | 0.852 | 24 | 0.058 | 0.607 | 0.132 | 0.797 | 0.831 | 0.796 | 0.886 | 0.597 | RNN-GRU | 3 | 0.019 | 0.549 | 0.112 | 0.193 | | 0.986 | 0.853 | 0.864 | 0.982 | 6 | 0.026 | 0.551 | 0.123 | 0.263 | 0.976 | 0.853 | 0.875 | 0.968 | 12 | 0.041 | 0.561 | 0.134 | 0.416 | 0.953 | 0.842 | 0.853 | 0.915 | 24 | 0.063 | 0.572 | 0.145 | 0.485 | 0.925 | 0.831 | 0.875 | 0.882 | LSTNet | 3 | 0.023 | 0.482 | 0.086 | 0.184 | | 0.976 | 0.875 | 0.932 | 0.984 | 6 | 0.028 | 0.516 | 0.093 | 0.256 | 0.965 | 0.864 | 0.911 | 0.969 | 12 | 0.036 | 0.493 | 0.112 | 0.325 | 0.954 | 0.853 | 0.901 | 0.947 | 24 | 0.044 | 0.505 | 0.101 | 0.464 | 0.943 | 0.842 | 0.921 | 0.887 | TPA-LSTM | 3 | 0.019 | 0.459 | 0.082 | 0.180 | | 0.987 | 0.886 | 0.943 | 0.985 | 6 | 0.026 | 0.461 | 0.092 | 0.235 | 0.976 | 0.875 | 0.932 | 0.974 | 12 | 0.036 | 0.471 | 0.096 | 0.323 | 0.965 | 0.886 | 0.921 | 0.949 | 24 | 0.046 | 0.482 | 0.112 | 0.439 | 0.942 | 0.864 | 0.911 | 0.908 | MTGNN | 3 | 0.019 | 0.426 | 0.088 | 0.178 | | 0.987 | 0.909 | 0.945 | 0.985 | 6 | 0.026 | 0.471 | 0.091 | 0.235 | 0.977 | 0.875 | 0.943 | 0.973 | 12 | 0.035 | 0.459 | 0.101 | 0.311 | 0.976 | 0.897 | 0.932 | 0.951 | 24 | 0.046 | 0.461 | 0.112 | 0.427 | 0.954 | 0.886 | 0.943 | 0.903 | SDGL | 3 | 0.018 | 0.414 | 0.070 | 0.018 | | 0.981 | 0.901 | 0.953 | 0.981 | 6 | 0.025 | 0.448 | 0.081 | 0.025 | 0.973 | 0.883 | 0.945 | 0.973 | 12 | 0.034 | 0.458 | 0.089 | 0.034 | 0.958 | 0.876 | 0.935 | 0.958 | 24 | 0.046 | 0.457 | 0.094 | 0.046 | 0.940 | 0.877 | 0.93 | 0.940 | MTSGNN | 3 | 0.016 | 0.365 | 0.075 | 0.016 | | 0.986 | 0.921 | 0.972 | 0.986 | 6 | 0.023 | 0.415 | 0.079 | 0.023 | 0.982 | 0.942 | 0.961 | 0.982 | 12 | 0.032 | 0.405 | 0.089 | 0.032 | 0.987 | 0.957 | 0.952 | 0.987 | 24 | 0.041 | 0.415 | 0.089 | 0.041 | 0.965 | 0.943 | 0.963 | 0.965 |
|
|
|