用于多元时间序列预测的图神经网络模型
张晗

Graph neural network model for multivariate time series forecasting
Han ZHANG
表 3 单步预测任务中所有模型的实验结果
Tab.3 Experimental results of models for single-step forecasting
模型lRSECORR
Exchange-RateTrafficElectricitySolar-EnergyExchange-RateTrafficElectricitySolar-Energy
AR30.0230.6060.0910.2440.9760.7850.8870.971
60.0280.6280.1010.3790.9650.7630.8640.926
120.0350.6280.1120.5910.9540.7630.8530.811
240.0450.6390.1230.8700.9420.7520.8750.531
VAR-MLP30.0270.5610.1450.1920.8530.8210.8750.983
60.0390.6630.1670.2680.8750.7750.8420.966
120.0400.6060.1560.4240.8310.7970.8210.906
240.0570.6280.1340.6840.7770.7850.8620.715
GP30.0240.6070.1560.2260.8750.7850.8760.975
60.0270.6850.1890.3290.8210.7410.8310.945
120.0390.6410.1670.5200.8530.7740.8420.852
240.0580.6070.1320.7970.8310.7960.8860.597
RNN-GRU30.0190.5490.1120.1930.9860.8530.8640.982
60.0260.5510.1230.2630.9760.8530.8750.968
120.0410.5610.1340.4160.9530.8420.8530.915
240.0630.5720.1450.4850.9250.8310.8750.882
LSTNet30.0230.4820.0860.1840.9760.8750.9320.984
60.0280.5160.0930.2560.9650.8640.9110.969
120.0360.4930.1120.3250.9540.8530.9010.947
240.0440.5050.1010.4640.9430.8420.9210.887
TPA-LSTM30.0190.4590.0820.1800.9870.8860.9430.985
60.0260.4610.0920.2350.9760.8750.9320.974
120.0360.4710.0960.3230.9650.8860.9210.949
240.0460.4820.1120.4390.9420.8640.9110.908
MTGNN30.0190.4260.0880.1780.9870.9090.9450.985
60.0260.4710.0910.2350.9770.8750.9430.973
120.0350.4590.1010.3110.9760.8970.9320.951
240.0460.4610.1120.4270.9540.8860.9430.903
SDGL30.0180.4140.0700.0180.9810.9010.9530.981
60.0250.4480.0810.0250.9730.8830.9450.973
120.0340.4580.0890.0340.9580.8760.9350.958
240.0460.4570.0940.0460.9400.8770.930.940
MTSGNN30.0160.3650.0750.0160.9860.9210.9720.986
60.0230.4150.0790.0230.9820.9420.9610.982
120.0320.4050.0890.0320.9870.9570.9520.987
240.0410.4150.0890.0410.9650.9430.9630.965