基于改进YOLOv5s的烟梗物料目标检测算法
|
吕佳铭,张峰,罗亚波
|
Improved YOLOv5s based target detection algorithm for tobacco stem material
|
Jiaming LV,Feng ZHANG,Yabo LUO
|
|
表 3 不同目标检测算法对比实验结果分析 |
Tab.3 Analysis of experimental results for comparing different object detection algorithms |
|
模型 | P/% | R/% | mAP@0.50/% | mAP@0.50∶0.95/% | M/MB | GFLOPs | FPS/帧 | Faster R-CNN | 78.6 | 83.3 | 87.5 | 82.0 | 108.0 | 150.8 | 13.14 | YOLOv3-tiny | 75.8 | 85.1 | 84.3 | 80.8 | 16.6 | 13.0 | 163.93 | YOLOv3 | 78.2 | 87.1 | 87.9 | 83.8 | 117.9 | 155.3 | 27.80 | YOLOv7-tiny | 85.2 | 88.7 | 89.8 | 86.4 | 11.7 | 13.2 | 123.46 | YOLOv7 | 75.3 | 87.7 | 86.3 | 84.8 | 71.3 | 105.2 | 25.58 | YOLOx-s | 76.5 | 92.9 | 89.1 | 84.0 | 34.3 | 26.8 | 101.73 | YOLOv8s | 80.3 | 93.5 | 89.5 | 86.7 | 21.4 | 28.8 | 112.36 | YOLOv5s | 77.8 | 93.3 | 90.3 | 89.0 | 13.8 | 16.6 | 212.77 | 本研究算法 | 86.2 | 94.1 | 96.1 | 94.7 | 12.1 | 21.3 | 178.57 |
|
|
|