基于改进YOLOv5s的烟梗物料目标检测算法
吕佳铭,张峰,罗亚波

Improved YOLOv5s based target detection algorithm for tobacco stem material
Jiaming LV,Feng ZHANG,Yabo LUO
表 1 模块消融实验结果分析
Tab.1 Analysis of results of module ablation experiments
模型P/%R/%mAP@0.50/%mAP@0.50∶0.95/%M/MBGFLOPsFPS/帧
①YOLOv5s77.893.390.389.013.816.6212.77
②YOLOv5s+RepViT-m181.985.389.886.226.224144.93
③YOLOv5s+重参数化的RepViT-m180.390.491.586.511.419.9192.31
④YOLOv5s+Dynamic Head79.793.692.190.613.717.8185.19
⑤YOLOv5s+RepViT-m1+Dynamic Head84.196.495.894.314.221.8133.33
⑥本研究算法86.294.196.194.712.121.3178.57