基于动态位置编码和注意力增强的目标跟踪算法
熊昌镇,郭传玺,王聪

Target tracking algorithm based on dynamic position encoding and attention enhancement
Changzhen XIONG,Chuanxi GUO,Cong WANG
表 1 GOT-10K、TrackingNet、UAV123上不同算法的对比
Tab.1 Comparison of different algorithms on GOT-10K, TrackingNet and UAV123
TrackersGOT-10KTrackingNetUAV123
AO/%SR0.50/%SR0.75/%AUC/%PNorm/%P/%AUC/%P/%
SiamFC[3]34.835.39.857.166.353.348.569.3
SiamPRN++[21]51.761.632.573.380.069.464.284.0
ATOM[22]55.663.440.270.377.164.864.3
Ocean[7]61.172.147.362.182.3
DiMP[23]61.171.749.274.080.168.765.485.8
KYS[24]63.675.151.574.080.068.8
DTT[25]63.474.951.479.685.078.9
PrDiMP[26]63.473.854.375.881.670.466.987.8
TrSiam[9]66.076.657.178.182.972.7
TrDimp[9]67.177.758.378.483.373.167.5
KeepTrack[13]68.379.361.078.183.573.869.7
STARK[27]68.878.164.182.086.9
TransT[10]72.382.468.281.486.780.369.1
CTT[28]81.486.4
TCTrack[12]60.480.0
AiATrack[11]69.677.763.282.787.880.469.390.7
ToMP[14]73.585.666.581.586.478.965.985.2
MixFormer[15]73.283.270.282.687.781.268.789.5
本研究算法73.983.368.682.787.780.869.390.5