Dφ = D2模式 | $ {D_1} = \dfrac{{{k^2}}}{{{k^2}+k+1}} - \dfrac{k}{{{k^2}+k+1}}\sqrt {1 - \dfrac{{{p_{{\text{av}}}}({k^2}+k+1)}}{{2k}}} $ |
$ D_{0}=D_{2}=1+k\left(D_{1}-1\right) $ |
$ D_{1} \in\left[\dfrac{k-1}{k}, \dfrac{k^{2}}{k^{2}+k+1}\right] $ |
$ p_{{\mathrm{av}}}=\dfrac{2 k}{k^{2}+k+1}-2\left(k^{2}+k+1\right)\left(D_{1}-\dfrac{k^{2}}{k^{2}+k+1}\right)^{2} $ |
Dφ = 0模式 | $ {D_1} = 1 - \sqrt {{p_{{\text{av}}}}/(2k - 2)} $ |
$ D_{2}=1+k\left(D_{1}-1\right), D_{\varphi}=0 $ |
$ D_{1} \in\left[\dfrac{k-1}{k}, 1\right] $ |
$ p_{{\mathrm{av}}}=2(k-1)\left(1-D_{1}\right)^{2} $ |