全局信息提取与重建的遥感图像语义分割网络
|
梁龙学,贺成龙,吴小所,闫浩文
|
Remote sensing image semantic segmentation network based on global information extraction and reconstruction
|
Longxue LIANG,Chenglong HE,Xiaosuo WU,Haowen YAN
|
|
表 4 在Vaihingen测试集上与先进的高精度网络定量比较结果 |
Tab.4 Quantitative comparison with advanced high-precision network on Vaihingen test set |
|
方法 | 骨干 | F1/% | F1mean/% | OA/% | mIoU/% | 不可渗透 | 建筑 | 植被 | 树 | 车 | 杂物 | DANet(2019) | Resnet18 | 90.3 | 93.9 | 82.5 | 88.3 | 75.8 | 54.1 | 86.2 | 88.8 | 76.2 | ABCNet(2021) | Resnet18 | 90.6 | 93.0 | 81.5 | 89.6 | 84.2 | 38.1 | 87.8 | 88.7 | 78.5 | MANet(2022) | Resnet18 | 92.0 | 94.5 | 83.5 | 89.4 | 88.0 | 50.9 | 89.5 | 90.0 | 81.1 | BANet(2021) | ResT-Lite | 92.4 | 95.1 | 83.8 | 89.8 | 89.0 | 54.5 | 90.0 | 90.5 | 82.1 | MAResUNet(2021) | Resnet18 | 92.2 | 95.1 | 84.3 | 90.0 | 88.5 | 50.9 | 90.0 | 90.5 | 82.0 | UnetFormer(2022) | Resnet18 | 92.7 | 95.4 | 84.4 | 90.1 | 89.7 | 57.1 | 90.5 | 90.8 | 82.8 | DCswin(2022) | Swin-tiny | 92.5 | 95.5 | 84.7 | 90.2 | 88.8 | 44.9 | 90.4 | 90.8 | 82.6 | MAGIFormer | MSCAN-tiny | 92.7 | 95.3 | 84.7 | 90.3 | 89.8 | 53.7 | 90.6 | 90.9 | 82.9 |
|
|
|