全局信息提取与重建的遥感图像语义分割网络
梁龙学,贺成龙,吴小所,闫浩文

Remote sensing image semantic segmentation network based on global information extraction and reconstruction
Longxue LIANG,Chenglong HE,Xiaosuo WU,Haowen YAN
表 4 在Vaihingen测试集上与先进的高精度网络定量比较结果
Tab.4 Quantitative comparison with advanced high-precision network on Vaihingen test set
方法骨干F1/%F1mean/%OA/%mIoU/%
不可渗透建筑植被杂物
DANet(2019)Resnet1890.393.982.588.375.854.186.288.876.2
ABCNet(2021)Resnet1890.693.081.589.684.238.187.888.778.5
MANet(2022)Resnet1892.094.583.589.488.050.989.590.081.1
BANet(2021)ResT-Lite92.495.183.889.889.054.590.090.582.1
MAResUNet(2021)Resnet1892.295.184.390.088.550.990.090.582.0
UnetFormer(2022)Resnet1892.795.484.490.189.757.190.590.882.8
DCswin(2022)Swin-tiny92.595.584.790.288.844.990.490.882.6
MAGIFormerMSCAN-tiny92.795.384.790.389.853.790.690.982.9