全局信息提取与重建的遥感图像语义分割网络
梁龙学,贺成龙,吴小所,闫浩文

Remote sensing image semantic segmentation network based on global information extraction and reconstruction
Longxue LIANG,Chenglong HE,Xiaosuo WU,Haowen YAN
表 3 在Potsdam测试集上与先进的高精度网络的定量比较结果
Tab.3 Quantitative comparison result with advanced high-precision network on Potsdam test set
方法骨干F1/%F1mean/%OA/%mIoU/%
不可渗透建筑低矮植被
DANet(2019)Resnet1892.396.086.688.490.390.790.283.1
MAResUNet(2021)Resnet1893.396.887.989.096.692.791.386.7
ABCNet(2021)Resnet1893.096.587.588.296.292.290.885.8
BANet(2021)ResT-Lite92.596.187.188.896.092.190.685.6
MANet(2022)Resnet1892.996.187.588.896.692.490.986.1
UnetFormer(2022)Resnet1893.196.587.889.296.792.791.186.6
DCswin(2022)Swin-tiny93.396.788.189.796.692.991.386.9
MAGIFormerMSCAN-tiny93.397.188.189.596.993.091.487.1