全局信息提取与重建的遥感图像语义分割网络
梁龙学,贺成龙,吴小所,闫浩文

Remote sensing image semantic segmentation network based on global information extraction and reconstruction
Longxue LIANG,Chenglong HE,Xiaosuo WU,Haowen YAN
表 2 在Potsdam测试集与先进的遥感语义分割网络结果进行对比
Tab.2 Comparison results on Potsdam test set with state-of-art remote sensing semantic segmentation network
方法骨干C/MBNp/106Nf/109F1mean/%OA/%mIoU/%
DANet(2019)Resnet182024.912.6120.2490.790.283.1
BANet(2021)ResTLi3248.012.729.3892.190.685.6
ABCNet(2021)Resnet181573.214.062.1692.290.885.8
MANet(2021)Resnet182091.612.088.2592.490.886.1
UnetFormer(2022)Resnet181481.711.711.6792.791.186.6
MAResUNet(2022)Resnet18638.5116.225.2992.791.386.7
DCswin(2022)Swin-tiny4265.945.689.3092.991.386.9
MAGIFormerMSCAN_tiny5015.313.962.7093.091.487.1