基于多脑区注意力机制胶囊融合网络的EEG-fNIRS情感识别
|
刘悦,张雪英,陈桂军,黄丽霞,孙颖
|
EEG-fNIRS emotion recognition based on multi-brain attention mechanism capsule fusion network
|
Yue LIU,Xueying ZHANG,Guijun CHEN,Lixia HUANG,Ying SUN
|
|
表 6 与其他情感识别模型对比 |
Tab.6 Contrast with other emotion that recognition models |
|
模型 | Acc/% | 平均值(标准差) | Sad | Happy | Calm | Fear | SVM | 89.60(6.59) | 90.98 | 89.13 | 88.96 | 89.31 | 2DCNN | 90.56(4.96) | 90.48 | 90.20 | 89.63 | 91.93 | gcForest | 81.91(8.63) | 82.76 | 80.27 | 82.43 | 82.17 | Transformer | 86.84(9.25) | 85.62 | 89.35 | 83.84 | 88.54 | GCN | 90.16(5.10) | 90.15 | 90.71 | 88.45 | 91.33 | MFM-CapsNet[10] | 92.74(3.14) | 92.1 | 93.52 | 91.61 | 93.73 | MLF-CapsNet[11] | 94.65(3.80) | 94.48 | 94.79 | 93.46 | 95.86 | ST-CapsNet[12] | 94.01(2.95) | 93.57 | 95.02 | 93.04 | 94.42 | MBA-CF-cCapsNet | 96.67(2.68) | 96.57 | 97.31 | 95.02 | 97.76 |
|
|
|