基于多脑区注意力机制胶囊融合网络的EEG-fNIRS情感识别
|
|
刘悦,张雪英,陈桂军,黄丽霞,孙颖
|
EEG-fNIRS emotion recognition based on multi-brain attention mechanism capsule fusion network
|
|
Yue LIU,Xueying ZHANG,Guijun CHEN,Lixia HUANG,Ying SUN
|
|
| 表 1 MBA-CF-cCapsNet模型的实验参数 |
| Tab.1 Experimental parameter of MBA-CF-cCapsNet model |
|
| 模型 | 层 | 参数 | 尺寸 | | 多脑区注意力机制 | Graph SAGE | in_channels | 5 | | Graph SAGE | out_channels | 5 | | Maxpooling | Kernel | C | | FC1 | in_features | 30 | | FC1 | out_features | 20 | | FC2 | in_features | 20 | | FC2 | out_features | 6 | | ReLu | — | — | | Sigmoid | — | — | | 卷积层 | Conv1_1 | Kernel | 3×3×128 | | Conv1_2 | Kernel | 5×5×128 | | 初级胶囊模块 | Conv2_1 | Kernel | 3×3×128 | | Conv2_2 | Kernel | 5×5×128 | | Conv3 | Kernel | 1×1×256 | | 胶囊融合模块 | Maxpooling | Kernel | 8 | | ReLu | — | — | | Tanh | — | — | | 分类胶囊模块 | 动态路由机制 | Wij | 8×16 |
|
|
|