基于局部信息融合的点云3D目标检测算法
|
张林杰,柴志雷,王宁
|
Point cloud 3D object detection algorithm based on local information fusion
|
Linjie ZHANG,Zhilei CHAI,Ning WANG
|
|
表 1 KITTI测试数据集上不同算法的检测结果对比 |
Tab.1 Comparison of detection result from different algorithm on KITTI test dataset |
|
方法 | 模态 | AP3D/% | | APBEV/% | 简单 | 中等 | 困难 | mAP | | 简单 | 中等 | 困难 | mAP | Point-GNN[16] | L | 88.33 | 79.47 | 72.29 | 80.03 | | 93.11 | 89.17 | 83.90 | 88.73 | 3DSSD[18] | L | 88.36 | 79.57 | 74.55 | 80.83 | | 92.66 | 89.02 | 85.86 | 89.18 | PV-RCNN[30] | L | 90.25 | 81.43 | 76.82 | 82.83 | | 94.98 | 90.65 | 86.14 | 90.60 | Voxel-RCNN[9] | L | 90.90 | 81.62 | 77.06 | 83.19 | | 94.85 | 88.83 | 86.13 | 89.94 | CT3D[8] | L | 87.83 | 81.77 | 77.16 | 82.25 | | 92.36 | 88.83 | 84.07 | 88.42 | Pyramid-PV[28] | L | 88.39 | 82.08 | 77.49 | 82.65 | | 92.19 | 88.84 | 86.21 | 89.08 | VoTr[21] | L | 89.90 | 82.09 | 79.14 | 83.71 | | 94.03 | 90.34 | 86.14 | 90.17 | SPG[22] | L | 90.50 | 82.13 | 78.90 | 83.84 | | 94.33 | 88.70 | 85.98 | 89.67 | VoxSet[27] | L | 88.53 | 82.06 | 77.46 | 82.68 | | — | — | — | — | PDV[31] | L | 90.43 | 81.86 | 77.36 | 83.22 | | 94.56 | 90.48 | 86.23 | 90.42 | VFF[32] | L+I | 89.50 | 82.09 | 79.29 | 83.62 | | — | — | — | — | PG-RCNN[23] | I | 89.38 | 82.13 | 77.33 | 82.88 | | 93.39 | 89.46 | 86.54 | 89.80 | PVT-SSD[24] | I | 90.65 | 82.29 | 76.85 | 83.26 | | 95.23 | 91.63 | 86.43 | 91.10 | DVF-PV[25] | L+I | 90.99 | 82.40 | 77.37 | 83.58 | | — | — | — | — | 本文方法 | L | 91.60 | 82.53 | 77.83 | 83.99 | | 95.59 | 91.37 | 86.72 | 91.23 |
|
|
|