基于双分支网络的表面肌电信号识别方法
王万良,潘杰,王铮,潘家宇

Recognition method of surface electromyographic signal based on two-branch network
Wanliang WANG,Jie PAN,Zheng WANG,Jiayu PAN
表 5 所有方法的计算资源分析
Tab.5 Computational resource analysis for all methods
方法Np/106C/MBte/stp/str/ms
KNN+FE[30]0.78±0.0186.86±1.220.020±0.001
SVM+FE[31]0.48±0.0177.06±1.620.030±0.001
CNN[8]4.98162.7322.65±0.98148.61±3.380.078±0.003
CNN+FE0.76117.3014.13±0.46101.32±2.110.066±0.002
CNN+FE+ETD1.15184.4820.19±0.65153.51±3.650.086±0.002
RESNET+FE[32]0.55336.8821.96±0.52147.53±4.060.071±0.002
Bi-GRU[33]1.41118.1016.76±0.50160.49±2.980.078±0.002
LSTM[34]1.52146.3517.14±0.59168.25±3.160.082±0.002
TRANSFORMER[35]2.49335.6824.16±0.66187.23±4.560.079±0.002
LCNN[36]1.77533.5021.06±0.62180.85±4.290.082±0.003
TDACAPS[14]0.87741.38216.45±6.161978.12±14.181.047±0.030
ETDTBN3.73321.4117.85±0.48156.28±3.990.076±0.002