基于双分支网络的表面肌电信号识别方法
|
王万良,潘杰,王铮,潘家宇
|
Recognition method of surface electromyographic signal based on two-branch network
|
Wanliang WANG,Jie PAN,Zheng WANG,Jiayu PAN
|
|
表 5 所有方法的计算资源分析 |
Tab.5 Computational resource analysis for all methods |
|
方法 | Np/106 | C/MB | te/s | tp/s | tr/ms | KNN+FE[30] | — | — | 0.78±0.01 | 86.86±1.22 | 0.020±0.001 | SVM+FE[31] | — | — | 0.48±0.01 | 77.06±1.62 | 0.030±0.001 | CNN[8] | 4.98 | 162.73 | 22.65±0.98 | 148.61±3.38 | 0.078±0.003 | CNN+FE | 0.76 | 117.30 | 14.13±0.46 | 101.32±2.11 | 0.066±0.002 | CNN+FE+ETD | 1.15 | 184.48 | 20.19±0.65 | 153.51±3.65 | 0.086±0.002 | RESNET+FE[32] | 0.55 | 336.88 | 21.96±0.52 | 147.53±4.06 | 0.071±0.002 | Bi-GRU[33] | 1.41 | 118.10 | 16.76±0.50 | 160.49±2.98 | 0.078±0.002 | LSTM[34] | 1.52 | 146.35 | 17.14±0.59 | 168.25±3.16 | 0.082±0.002 | TRANSFORMER[35] | 2.49 | 335.68 | 24.16±0.66 | 187.23±4.56 | 0.079±0.002 | LCNN[36] | 1.77 | 533.50 | 21.06±0.62 | 180.85±4.29 | 0.082±0.003 | TDACAPS[14] | 0.87 | 741.38 | 216.45±6.16 | 1978.12±14.18 | 1.047±0.030 | ETDTBN | 3.73 | 321.41 | 17.85±0.48 | 156.28±3.99 | 0.076±0.002 |
|
|
|