基于双分支网络的表面肌电信号识别方法
|
王万良,潘杰,王铮,潘家宇
|
Recognition method of surface electromyographic signal based on two-branch network
|
Wanliang WANG,Jie PAN,Zheng WANG,Jiayu PAN
|
|
表 3 不同受试者情况下各方法的识别效果 |
Tab.3 Recognition accuracy of each method under different subject |
|
方法 | Pc/% | Po/% | HC | HO | RF | WE | WF | KNN+FE[30] | 97.18±0.00 | 72.99±0.00 | 47.95±0.00 | 93.50±0.00 | 42.14±0.00 | 70.75±0.00 | SVM+FE[31] | 64.27±0.00 | 86.24±0.00 | 51.71±0.00 | 100.00±0.00 | 52.99±0.00 | 71.04±0.00 | CNN[8] | 87.35±3.45 | 66.63±0.58 | 58.44±2.09 | 98.94±0.65 | 40.85±1.05 | 70.49±0.86 | CNN+FE | 71.99±4.16 | 90.51±1.85 | 80.87±7.59 | 99.82±0.49 | 31.39±7.51 | 75.06±0.18 | CNN+FE+ETD | 82.63±2.37 | 80.13±3.88 | 82.22±6.97 | 99.25±0.78 | 33.68±8.55 | 77.57±0.78 | RESNET+FE[32] | 73.79±3.96 | 85.22±2.78 | 81.17±6.19 | 99.22±0.65 | 32.11±6.95 | 74.96±0.26 | Bi-GRU[33] | 82.06±6.71 | 66.26±7.42 | 37.35±3.84 | 94.65±2.52 | 63.98±5.02 | 68.93±0.38 | LSTM[34] | 78.79±6.81 | 60.85±5.56 | 40.32±3.96 | 99.27±0.72 | 54.03±6.77 | 67.08±1.11 | TRANSFORMER[35] | 83.09±2.81 | 59.05±6.56 | 33.22±3.88 | 97.57±0.92 | 55.13±6.44 | 65.33±1.08 | LCNN[36] | 95.95±2.11 | 80.78±3.46 | 62.25±5.33 | 99.69±0.15 | 46.95±3.16 | 77.26±0.53 | TDACAPS[14] | 98.25±3.89 | 84.98±7.12 | 82.48±5.96 | 98.24±0.62 | 44.75±5.50 | 81.90±1.09 | ETDTBN | 99.75±0.15 | 75.51±1.85 | 95.27±2.54 | 99.93±0.05 | 50.21±0.45 | 84.15±0.41 |
|
|
|