基于双分支网络的表面肌电信号识别方法
王万良,潘杰,王铮,潘家宇

Recognition method of surface electromyographic signal based on two-branch network
Wanliang WANG,Jie PAN,Zheng WANG,Jiayu PAN
表 3 不同受试者情况下各方法的识别效果
Tab.3 Recognition accuracy of each method under different subject
方法Pc/%Po/%
HCHORFWEWF
KNN+FE[30]97.18±0.0072.99±0.0047.95±0.0093.50±0.0042.14±0.0070.75±0.00
SVM+FE[31]64.27±0.0086.24±0.0051.71±0.00100.00±0.0052.99±0.0071.04±0.00
CNN[8]87.35±3.4566.63±0.5858.44±2.0998.94±0.6540.85±1.0570.49±0.86
CNN+FE71.99±4.1690.51±1.8580.87±7.5999.82±0.4931.39±7.5175.06±0.18
CNN+FE+ETD82.63±2.3780.13±3.8882.22±6.9799.25±0.7833.68±8.5577.57±0.78
RESNET+FE[32]73.79±3.9685.22±2.7881.17±6.1999.22±0.6532.11±6.9574.96±0.26
Bi-GRU[33]82.06±6.7166.26±7.4237.35±3.8494.65±2.5263.98±5.0268.93±0.38
LSTM[34]78.79±6.8160.85±5.5640.32±3.9699.27±0.7254.03±6.7767.08±1.11
TRANSFORMER[35]83.09±2.8159.05±6.5633.22±3.8897.57±0.9255.13±6.4465.33±1.08
LCNN[36]95.95±2.1180.78±3.4662.25±5.3399.69±0.1546.95±3.1677.26±0.53
TDACAPS[14]98.25±3.8984.98±7.1282.48±5.9698.24±0.6244.75±5.5081.90±1.09
ETDTBN99.75±0.1575.51±1.8595.27±2.5499.93±0.0550.21±0.4584.15±0.41